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K. Hepp, Zürich, Switzerland
W. Hillebrandt, Garching, Germany
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Jürgen Ehlers

In the 1950s the mathematical department of Hamburg University, with its
stars Artin, Blaschke, Collatz, Kähler, Peterson, Sperner and Witt had a
strong drawing power for Jürgen Ehlers, student of mathematics and physics.
Since he had impressed his teachers he could well have embarked on a dis-
tinguished career in mathematics had it not been for Pascual Jordan and – I
suspect – Hermann Weyl’s Space–Time–Matter.

Jordan had just published his book “Schwerkraft und Weltall” which was
a text on Einstein’s theory of gravitation, developing his theory of a variable
gravitational “constant”. Only the rudiments of this theory had been for-
mulated and Jordan, overburdened with countless extraneous commitments,
was eager to find collaborators to develop his theory. This opportunity to
break new ground in physics enticed Jürgen Ehlers and Wolfgang Kundt to
help Jordan with his problems, and their work was acknowledged in the 1955
second edition of Jordan’s book.

It didn’t take Jürgen, who always was a systematic thinker, long to re-
alize that not only Jordan’s generalization but also Einstein’s theory itself
needed a lot more work. This impression was well described by Kurt Goedel
in 1955 in a letter to Carl Seelig: “My own work in relativity theory refers
to the pure gravitational theory of 1916 of which I believe that it was left by
Einstein himself and the whole contemporary generation of physicists as a
torso – and in every respect, physically, mathematically, and its applications
to cosmology”.

When asked by Seelig to elaborate , Goedel added: “Concerning the com-
pletion of gravitational theory of which I wrote in my last letter I do not
mean a completion in the sense that the theory would cover a larger domain
of phenomena (Tatsachenbereich), but a mathematical analysis of the equa-
tions that would make it possible to attempt their solution systematically
and to find their general properties. Until now one does not even know the
analogs of the fundamental integral theorems of Newtonian theory which,
in my opinion, have to exist without fail. Since such integral theorems and
other mathematical lemmas would have a physical meaning, the physical un-
derstanding of the theory would be enhanced. On the other hand, a closer
analysis of the physical content of the theory could lead to such mathematical
theorems”.



VI Jürgen Ehlers

Such a view of Einstein’s theory was also reflected in the talks and dis-
cussions of the “Jordan Seminar”. This was a weekly meeting of Jordan’s
coworkers in the Physics Department of Hamburg University to discuss Jor-
dan’s theory of a variable gravitational scalar. However, under Jürgen’s lead-
ership, the structure and interpretation of Einstein’s original theory became
the principal theme of nearly all talks. Jordan, who found little time to con-
tribute actively to his theory, reluctantly went along with this change of topic.
Through grants from the US Air Force and other sources he provided the lo-
gistic support for his research group. For publication of the lengthy research
papers on Einstein’s theory of gravitation by Ehlers, Kundt, Ozsvath, Sachs
and Trümper, he made the proceedings of the Akademie der Wissenschaften
und der Literatur in Mainz available. Jordan appeared often as coauthor,
but I doubt whether he contributed much more than suggestions in style,
like never to start a sentence with a formula. Some results were also written
up as reports for the Air Force and became known as the Hamburg Bible.

It was a principal concern in Jürgen’s contributions to Einstein’s theory
to clarify the mathematics, separate proof from conjecture and insist on in-
variance as well as elegance. This clear and terse style, which always kept
physical interpretation in mind, appeared already in his Hamburg papers.
His work in relativity resulted not only in books, published papers, super-
vised theses, critical remarks in discussions and suggestions for future work.
By establishing the “Albert–Einstein–Institut” Jürgen designed a unique in-
ternational center for research in relativity. As the founding director of this
“Max–Planck–Institut für Gravitationsphysik” in Brandenburg, he has led it
to instant success. Through his leadership, research on Einstein’s theory in
Germany is flourishing again and his work and style has set a standard for a
whole generation of researchers.

Engelbert Schücking



Preface

The contributions in this book are dedicated to Jürgen Ehlers on the occasion
of his 70th birthday. I have tried to find topics which were and are near to
Jürgen’s interests and scientific activities. I hope that the book – even in
the era of electronic publishing – will serve for some time as a review of the
themes treated; a source from which, for example, a PhD student could learn
certain things thoroughly. In initiating the project of the book, the model I
had in mind was the “Witten book”.

Early in his career Jürgen Ehlers worked on exact solutions, and demon-
strated how one goes about characterizing exact solutions invariantly and
searching for their intrinsic geometrical properties. So, it seems appropriate
to begin the book with the article by J. Bičák: “Selected Solutions of Ein-
stein’s Field Equations: Their Role in General Relativity and Astrophysics.”
Certainly not all of the large number of known exact solutions are of equal
weight; this article describes the most important ones and explains their role
for the development and understanding of Einstein’s theory of gravity.

The second contribution is the article by H. Friedrich and A. Rendall:
“The Cauchy Problem for the Einstein Equations”. It contains a careful ex-
position of the local theory, including the delicate gauge questions and a
discussion of various ways of writing the equations as hyperbolic systems.
Furthermore, it becomes clear that an understanding of the Cauchy problem
really gives new insight into properties of the equations and the solutions and
not just “uniqueness and existence”.

“Post-Newtonian Gravitational Radiation” is the title of the article by
L. Blanchet. It deals with a topic Jürgen has contributed to and thought
about deeply. However, these matters have developed in such a way that
presently only a small number of experts understand all the technical details
and subtleties. Hopefully, this present contribution will help us gain some
understanding of certain aspects of post-Newtonian approximations.

The fourth contribution, “Duality and Hidden Symmetries in Gravita-
tional Theories”, by D. Maison, outlines how far one of Jürgen’s creations,
the “Ehlers transformation” has evolved. From a “trick” to produce new so-
lutions from known ones, the presence of such transformations in the space of
solutions is now seen as a structural property of various gravitational theories,
which at present attract a lot of attention.



VIII Preface

The contribution, by R. Beig and B. Schmidt, “Time-Independent Grav-
itational Fields” collects and describes what is known about global proper-
ties of time-independent spacetimes. It contains, in particular, a fairly self-
contained description of the multipole expansion at infinity.

V. Perlick has written on “Gravitational Lensing from a Geometric View-
point”. In the last ten years, lensing has become a fascinating new part of
observational astrophysics. However, there are still important and interesting
conceptual and mathematical questions when one tries to compare practical
astrophysical applications with their mathematical modelling in Einstein’s
theory of gravity. Some of those issues are treated in this contribution.

Obviously, there are some subjects missing, for which I was not able to find
a contribution. What I regret most is that there is no article on cosmology,
a field in which Jürgen has always been very interested.

An intruiging thought about the book is that Juergen would have read all
these contributions before publication and no doubt improved them by his
constructive criticism. For a short while I had in mind to ask Jürgen to do
just this, but finally I decided that this would be too much of a burden for a
birthday present.

Finally, I would like to thank the authors, friends and colleagues who have
helped me and have given valuable advice.

Bernd Schmidt
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Selected Solutions of Einstein’s Field
Equations: Their Role in General Relativity
and Astrophysics

Jǐŕı Bičák

Institute of Theoretical Physics,
Charles University, Prague

1 Introduction and a Few Excursions

The primary purpose of all physical theory is rooted in reality, and most rela-
tivists pretend to be physicists. We may often be members of departments of
mathematics and our work oriented towards the mathematical aspects of Ein-
stein’s theory, but even those of us who hold a permanent position on “scri”,
are primarily looking there for gravitational waves. Of course, the builder of
this theory and its field equations was the physicist. Jürgen Ehlers has always
been very much interested in the conceptual and axiomatic foundations of
physical theories and their rigorous, mathematically elegant formulation; but
he has also developed and emphasized the importance of such areas of rela-
tivity as kinetic theory, the mechanics of continuous media, thermodynamics
and, more recently, gravitational lensing. Feynman expressed his view on the
relation of physics to mathematics as follows [1]:

“The physicist is always interested in the special case; he is never inter-
ested in the general case. He is talking about something; he is not talking
abstractly about anything. He wants to discuss the gravity law in three di-
mensions; he never wants the arbitrary force case in n dimensions. So a certain
amount of reducing is necessary, because the mathematicians have prepared
these things for a wide range of problems. This is very useful, and later on it
always turns out that the poor physicist has to come back and say, ‘Excuse
me, when you wanted to tell me about four dimensions...’ ” Of course, this
is Feynman, and from 1965...

However, physicists are still rightly impressed by special explicit formulae.
Explicit solutions enable us to discriminate more easily between a “physical”
and “pathological” feature. Where are there singularities? What is their char-
acter? How do test particles and fields behave in given background space-
times? What are their global structures? Is a solution stable and, in some
sense, generic? Clearly, such questions have been asked not only within gen-
eral relativity.

By studying a special explicit solution one acquires an intuition which,
in turn, stimulates further questions relevant to more general situations.
Consider, for example, charged black holes as described by the Reissner–
Nordström solution. We have learned that in their interior a Cauchy horizon
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exists and that the singularities are timelike. We shall discuss this in greater
detail in Sect. 3.1. The singularities can be seen by, and thus exert an influence
on, an observer travelling in their neighborhood. However, will this violation
of the (strong) cosmic censorship persist when the black hole is perturbed
by weak (“linear”) or even strong (“nonlinear”) perturbations? We shall see
that, remarkably, this question can also be studied by explicit exact special
model solutions. Still more surprisingly, perhaps, a similar question can be
addressed and analyzed by means of explicit solutions describing completely
diverse situations – the collisions of plane waves. As we shall note in Sect.
8.3, such collisions may develop Cauchy horizons and subsequent timelike sin-
gularities. The theory of black holes and the theory of colliding waves have
intriguing structural similarities which, first of all, stem from the circum-
stance that in both cases there exist two symmetries, i.e. two Killing fields.
What, however, about more general situations? This is a natural question
inspired by the explicit solutions. Then “the poor physicists have to come
back” to a mathematician, or today alternatively, to a numerical relativist,
and hope that somehow they will firmly learn whether the cosmic censor-
ship is the “truth”, or that it has been a very inspirational, but in general
false conjecture. However, even after the formulation of a conjecture about
a general situation inspired by particular exact solutions, newly discovered
exact solutions can play an important role in verifying, clarifying, modifying,
or ruling out the conjecture. And also “old” solutions may turn out to act
as asymptotic states of general classes of models, and so become still more
significant.

Exact explicit solutions have played a crucial role in the development of
many areas of physics and astrophysics. Later on in this Introduction we
will take note of some general features which are specific to the solutions of
Einstein’s equations. Before that, however, for illustration and comparison
we shall indicate briefly with a few examples what influence exact explicit
solutions have had in other physical theories. Our next introductory excur-
sion, in Sect. 1.2, describes in some detail the (especially early) history of
Einstein’s route to the gravitational field equations for which his short stay
in Prague was of great significance. The role of Ernst Mach (who spent 28
years in Prague before Einstein) in the construction of the first modern cos-
mological model, the Einstein static universe, is also touched upon. Section
1.3 is devoted to a few remarks on some old and new impacts of the other
simplest “cosmological” solutions of Einstein’s equations – the Minkowski,
the de Sitter, and the anti de Sitter spacetimes. Some specific features of
solutions in Einstein’s theory, such as the observability and interpretation
of metrics, the role of general covariance, the problem of the equivalence of
two metrics, and of geometrical characterization of solutions are mentioned in
Sect. 1.4. Finally, in the last (sub)sections of the “Introduction” we give some
reasons why we consider our choice of solutions to be “a natural selection”,
and we briefly outline the main body of the article.
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1.1 A Word on the Role of Explicit Solutions
in Other Parts of Physics and Astrophysics

Even in a linear theory like Maxwell’s electrodynamics one needs a good
sample, a useful kit, of exact fields like the homogeneous field, the Coulomb
field, the dipole, the quadrupole and other simple solutions, in order to gain
a physical intuition and understanding of the theory. Similarly, of course,
with the linearized theory of gravity. Going over to the Schrödinger equa-
tion of standard quantum mechanics, again a linear theory, consider what we
have learned from simple, explicitly soluble problems like the linear and the
three-dimensional harmonic oscillator, or particles in potential wells of var-
ious shapes. We have acquired, for example, a transparent insight into such
basic quantum phenomena as the existence of minimum energy states whose
energy is not zero, and their associated wave functions which have a certain
spatial extent, in contrast to classical mechanics. The three-dimensional prob-
lems have taught us, among other things, about the degeneracy of the energy
levels. The case of the harmonic oscillator is, of course, very exceptional since
Hamiltonians of the same type appear in all problems involving quantized os-
cillations. One encounters them in quantum electrodynamics, quantum field
theory, and likewise in the theory of molecular and crystalline vibrations. It is
thus perhaps not so surprising that the Hamiltonian and the wave functions
of the harmonic oscillator arise even in the minisuperspace models associated
with the Hartle–Hawking no-boundary proposal for the wave function of the
universe [2], and in the minisuperspace model of homogeneous spherically
symmetric dust filled universes [3].

In nonlinear problems explicit solutions play still a greater role since to
gain an intuition of nonlinear phenomena is hard. Landau and Lifshitz in
their Fluid Mechanics (Volume 6 of their course) devote a whole section to
the exact solutions of the nonlinear Navier–Stokes equations for a viscous
fluid (including Landau’s own solution for a jet emerging from the end of a
narrow tube into an infinite space filled with fluid).

Although Poisson’s equation for the gravitational potential in the classical
theory of gravity is linear, the combined system of equations describing both
the field and its fluid sources (not rigid bodies, these are simple!) character-
ized by Euler’s equations and an equation of state are nonlinear. In classical
astrophysical fluid dynamics perhaps the most distinct and fortunate example
of the role of explicit solutions is given by the exact descriptions of ellipsoidal,
uniform density masses of self-gravitating fluids. These “ellipsoidal figures of
equilibrium” [4] include the familiar Maclaurin spheroids and triaxial Jacobi
ellipsoids, which are characterized by rigid rotation, and a wider class dis-
covered by Dedekind and Riemann, in which a motion of uniform vorticity
exists, even in a frame in which the ellipsoidal surface is at rest. The solutions
representing the rotating ellipsoids did not only play an inspirational role in
developing basic concepts of the theory of rigidly rotating stars, but quite un-
expectedly in the study of inviscid, differentially rotating polytropes. These
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closely resemble Maclaurin spheroids, although they do not maintain rigid
rotation. As noted in the well-known monograph on rotating stars [5], “the
classical work on uniformly rotating, homogeneous spheroids has a range of
validity much greater than was usually anticipated”. It also influenced galac-
tic dynamics [6]: the existence of Jacobi ellipsoids suggested that a rapidly
rotating galaxy may not remain axisymmetric, and the Riemann ellipsoids
demonstrated that there is a distinction between the rate at which the matter
in a triaxial rotating body streams and the rate at which the figure of the
body rotates. Since rotating incompressible ellipsoids adequately illustrate
the general feature of rotating axisymmetric bodies, they are also used in
the studies of double stars whose components are close to each other. The
disturbances caused by a neighbouring component are treated as first order
perturbations. Relativistic effects on the rotating incompressible ellipsoids
have been investigated in the post-Newtonian approximation by various au-
thors, recently with a motivation to understand the coalescence of binary
neutron stars near their innermost stable circular orbit (see [7] for the latest
work and a number of references).

As for the last subject, which has a more direct connection with exact
explicit solutions of Einstein’s equations, we want to say a few words about
integrable systems and their soliton solutions. Soliton theory has been one
of the most interesting developments in the past decades both in physics
and mathematics, and gravity has played a role both in its birth and recent
developments. It has been known from the end of the last century that the
celebrated Korteweg–de Vries nonlinear evolution equation, which governs
one dimensional surface gravity waves propagating in a shallow channel of
water, admits solitary wave solutions. However, it was not until Zabusky and
Kruskal (the Kruskal of Sect. 2.4 below) did extensive numerical studies of
this equation in 1965 that the remarkable properties of the solitary waves
were discovered: the nonlinear solitary waves, named solitons by Zabusky
and Kruskal, can interact and then continue, preserving their shapes and
velocities. This discovery has stimulated extensive studies of other nonlin-
ear equations, the inverse scattering methods of their solution, the proof
of the existence of an infinite number of conservation laws associated with
such equations, and the construction of explicit solutions (see [8] for a re-
cent comprehensive treatise). Various other nonlinear equations, similar to
the sine-Gordon equation or the nonlinear Schrödinger equation, arising for
example in plasma physics, solid state physics, and nonlinear optics, have
also been successfully tackled by these methods. At the end of the 1970s sev-
eral authors discovered that Einstein’s vacuum equations for axisymmetric
stationary systems can be solved by means of the inverse scattering meth-
ods, and it soon became clear that one can employ them also in situations
when both Killing vectors are spacelike (producing, for example, soliton-type
cosmological gravitational waves). Dieter Maison, one of the pioneers in ap-
plying these techniques in general relativity, describes the subject thoroughly
in this volume. We shall briefly meet the soliton methods when we discuss
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the uniformly rotating disk solution of Neugebauer and Meinel (Sect. 6.3),
colliding plane waves (Sect. 8.3), and inhomogeneous cosmological models
(Sect. 12.2). Our aim, however, is to understand the meaning of solutions,
rather than generation techniques of finding them. From this viewpoint it
is perhaps first worth noting the interplay between numerical and analytic
studies of the soliton solutions – hopefully, a good example of an interaction
for numerical and mathematical relativists. However, the explicit solutions
of integrable models have played important roles in various other contexts.
The most interesting multi-dimensional integrable equations are the four-
dimensional self-dual Yang–Mills equations arising in field theory. Their so-
lutions, discovered by R. Ward using twistor theory, on one hand stimulated
Donaldson’s most remarkable work on inequivalent differential structures on
four-manifolds. On the other hand, Ward indicated that many of the known
integrable systems can be obtained by dimensional reduction from the self-
dual Yang–Mills equations. Very recently this view has been substantiated
in the monograph by Mason and Woodhouse [9]. The words by which these
authors finely express the significance of exact solutions in integrable systems
can be equally well used for solutions of Einstein’s equations: “they combine
tractability with nonlinearity, so they make it possible to explore nonlinear
phenomena while working with explicit solutions”.1

1.2 Einstein’s Field Equations

Since Jürgen Ehlers has always been, among other things, interested in the
history of science, he will hopefully tolerate a few remarks on the early his-
tory of Einstein’s equations to which not much attention has been paid in
the literature. It was during his stay in Prague in 1911 and 1912 that Ein-
stein’s intensive interest in quantum theory diminished, and his systematic
effort in constructing a relativistic theory of gravitation began. In his first
“Prague theory of gravity” he assumed that gravity can be described by a
single function – the local velocity of light. This assumption led to insur-
mountable difficulties. However, Einstein learned much in Prague on his way
to general relativity [11]: he understood the local significance of the principle
of equivalence; he realized that the equations describing the gravitational field
must be nonlinear and have a form invariant with respect to a larger group
1 In 1998, in the discussion after his Prague lecture on the present role of physics

in mathematics, Prof. Michael Atiyah expressed a similar view that even with
more powerful supercomputers and with a growing body of general mathematical
results on the existence and uniqueness of solutions of differential equations, the
exact, explicit solutions of nonlinear equations will not cease to play a significant
role. (As it is well known, Sir Michael Atiyah has made fundamental contributions
to various branches of mathematics and mathematical physics, among others, to
the theory of solitons, instantons, and to the twistor theory of Sir Roger Penrose,
with whom he has been interacting “under the same roof” in Oxford for 17 years
[10].)
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of transformations than the Lorentz group; and he found that “spacetime
coordinates lose their simple physical meaning”, i.e. they do not determine
directly the distances between spacetime points.2 In his “Autobiographical
Notes” Einstein says: “Why were seven years ... required for the construction
of general relativity? The main reason lies in the fact that it is not easy to
free oneself from the idea that coordinates must have an immediate metrical
meaning”... Either from Georg Pick while still in Prague, or from Marcel
Grossmann during the autumn of 1912 after his return to Zurich (cf. [11]),
Einstein learned that an appropriate mathematical formalism for his new the-
ory of gravity was available in the work of Riemann, Ricci, and Levi–Civita.
Several months after his departure from Prague and his collaboration with
Grossmann, Einstein had general relativity almost in hand. Their work [13]
was already based on the generally invariant line element

ds2 = gμνdx
μdxν (I)

in which the spacetime metric tensor gμν(xρ), μ, ν, ρ = 0, 1, 2, 3, plays a dual
role: on the one hand it determines the spacetime geometry, on the other it
represents the (ten components of the) gravitational potential and is thus a
dynamical variable. The disparity between geometry and physics, criticized
notably by Ernst Mach,3 had thus been removed. When searching for the field
equations for the metric tensor, Einstein and Grossmann had already real-
ized that a natural candidate for generally covariant field equations would
be the equations relating – in present-day terminology – the Ricci tensor
and the energy-momentum tensor of matter. However, they erroneously con-
cluded that such equations would not yield the Poisson equation of Newton’s
theory of gravitation as a first approximation for weak gravitational fields
(see both §5 in the “Physical part” in [13] written by Einstein and §4, be-
low equation (46), in the “Mathematical part” by M. Grossmann). Einstein
then rejected the general covariance. In a subsequent paper with Grossmann
[14], they supported this mis-step by a well-known “hole” meta-argument and
obtained (in today’s terminology) four gauge conditions such that the field
equations were covariant only with respect to transformations of coordinates
permitted by the gauge conditions. We refer to, for example, [15] for more
detailed information on the further developments leading to the final version
of the field equations. Let us only summarize that in late 1915 Einstein first
readopted the generally covariant field equations from 1913, in which the
Ricci tensor Rμν was, up to the gravitational coupling constant, equal to the
energy-momentum tensor Tμν (paper submitted to the Prussian Academy on

2 At that time Einstein’s view on the future theory of gravity are best summarized
in his reply to M. Abraham [12], written just before departure from Prague.

3 Mach spent 28 years as Professor of Experimental Physics in Prague, until 1895,
when he took the History and Theory of Inductive Natural Sciences chair in
Vienna.
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November 4). From his vacuum field equations

Rμν = 0, (II)

where Rμν depends nonlinearly on gαβ and its first derivatives, and linearly
on its second derivatives, he was able to explain the anomalous part of the
perihelion precession of Mercury – in the note presented to the Academy
on November 18. And finally, in the paper [16] submitted on November 25
(published on December 2, 1915), the final version of the gravitational field
equations, or Einstein’s field equations appeared:4

Rμν −
1
2
gμνR =

8πG
c4

Tμν , (III)

where the scalar curvature R = gμνRμν . Newton’s gravitational constant G
and the velocity of light c are the (only) fundamental constants appearing
in the theory. If not stated otherwise, in this article we use the geometrized
units in which G = c = 1, and the same conventions as in [18] and [19].

Now it is well known that Einstein further generalized his field equations
by adding a cosmological term +Λgμν on the left side of the field equations
(III). The cosmological constant Λ appeared first in Einstein’s work “Cos-
mological considerations in the General Theory of Relativity” [20] submitted
on February 8, 1917 and published on February 15, 1917, which contained
the closed static model of the Universe (the Einstein static universe) – an
exact solution of equations (III) with Λ > 0 and an energy-momentum ten-
sor of incoherent matter (“dust”). This solution marked the birth of modern
cosmology.

We do not wish to embark upon the question of the role that Mach’s prin-
ciple played in Einstein’s thinking when constructing general relativity, or
upon the intriguing issues relating to aspects of Mach’s principle in present-
day relativity and cosmology5 – a problem which in any event would far
exceed the scope of this article. Although it would not be inappropriate to
4 David Hilbert submitted his paper on these field equations five days before Ein-

stein, though it was published only on March 31, 1916. Recent analysis [17]
of archival materials has revealed that Hilbert made significant changes in the
proofs. The originally submitted version of his paper contained the theory which
is not generally covariant, and the paper did not include equations (III).

5 It was primarily Einstein’s recognition of the role of Mach’s ideas in his route
towards general relativity, and in his christening them by the name “Mach’s
principle” (though Schlick used this term in a vague sense three years before
Einstein), that makes Mach’s Principle influential even today. After the 1988
Prague conference on Ernst Mach and his influence on the development of physics
[21], the 1993 conference devoted exclusively to Mach’s principle was held in
Tübingen, from which a remarkably thorough volume was prepared [22], covering
all aspects of Mach’s principle and recording carefully all discussion. The clarity
of ideas and insights of Jürgen Ehlers contributed much to both conferences and
their proceedings. For a brief more recent survey of various aspects of Mach’s
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include it here since exact solutions (such as Gödel’s universe or Ozsváth’s
and Schücking’s closed model) have played a prominent role in this context.
However, it should be at least stated that Einstein originally invented the idea
of a closed space in order to eliminate boundary conditions at spatial infinity.
The boundary conditions “flat at infinity” bring with them an inertial frame
unrelated to the mass-energy content of the space, and Einstein, in accordance
with Mach’s views, believed that merely mass-energy can influence inertia.
Field equations (III) are not inconsistent with this idea, but they admit as
the simplest solution an empty flat Minkowski space (Tμν = 0, gμν = ημν =
diag (−1,+1,+1,+1)), so some restrictive boundary conditions are essential
if the idea is to be maintained. Hence, Einstein introduced the cosmological
constant Λ, hoping that with this space will always be closed, and the bound-
ary conditions eliminated. But it was also in 1917 when de Sitter discovered
the solution [25] of the vacuum field equations (II) with added cosmological
term (Λ > 0) which demonstrated that a nonvanishing Λ does not necessarily
imply a nonvanishing mass-energy content of the universe.

1.3 “Just So” Notes on the Simplest Solutions: The Minkowski,
de Sitter, and Anti-de Sitter Spacetimes

Our brief intermezzo on the cosmological constant brought up three explicit
simple exact solutions of Einstein’s field equations – the Minkowski, Einstein,
and de Sitter spacetimes. To these also belongs the anti de Sitter spacetime,
corresponding to a negative Λ. The de Sitter spacetime has the topology R1×
S3 (with R1 corresponding to the time) and is best represented geometrically
as the 4-dimensional hyperboloid −v2 + w2 + x2 + y2 + z2 = (3/Λ) in 5-
dimensional flat space with metric ds2 = −dv2 + dw2 + dx2 + dy2 + dz2. The
anti de Sitter spacetime has the topology S1 × R3, and can be visualized as
the 4-dimensional hyperboloid −U2−V 2+X2+Y 2+Z2 = (−3/Λ), Λ < 0, in
flat 5-dimensional space with metric ds2 = −dU2−dV 2+dX2+dY 2+dZ2. As
is usual (cf. e.g. [26,27]), we mean by “anti de Sitter spacetime” the universal
covering space which contains no closed timelike lines; this is obtained by
unwrapping the circle S1.

These spacetimes will not be discussed in the following sections. Ocas-
sionally, for instance, in Sects. 5 and 10, we shall consider spacetimes which
become asymptotically de Sitter. However, since these solutions have played
a crucial role in many issues in general relativity and cosmology, and most
recently, they have become important prerequisites on the stage of the theo-
retical physics of the “new age”, including string theory and string cosmology,
we shall make a few comments on these solutions here, and give some refer-
ences to recent literature.

principle in general relativity, see the introductory section in the work [23], in
which Mach’s principle is analyzed in the context of perturbed Robertson–Walker
universes. Most recently, Mach’s principle seems to enter even into M theory [24].
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The basic geometrical properties of these spaces are analyzed in the Bat-
telle Recontres lectures by Penrose [27], and in the monograph by Hawking
and Ellis [26], where also references to older literature can be found. The im-
portant role of the de Sitter solution in the theory of the expanding universe
is finely described in the book by Peebles [28], and in much greater detail
in the proceedings of the Bologna 1988 meeting on the history of modern
cosmology [29].

The Minkowski, de Sitter and anti de Sitter spacetimes are the simplest so-
lutions in the sense that their metrics are of constant (zero, positive, and neg-
ative) curvature. They admit the same number (ten) of independent Killing
vectors, but the interpretations of corresponding symmetries differ for each
spacetime. Together with the Einstein static universe, they all are confor-
mally flat, and can be represented as portions of the Einstein static universe
[26,27]. However, their conformal structure is globally different. In Minkowski
spacetime one can go to infinity along timelike geodesics and arrive to the
future (or past) timelike infinity i+ (or i−); along null geodesics one reaches
the future (past) null infinity J +(J−); and spacelike geodesics lead to spa-
tial infinity i0. Minkowski spacetime can be compactified and mapped onto
a finite region by an appropriate conformal rescaling of the metric. One thus
obtains the well-known Penrose diagram in which the three types of infini-
ties are mapped onto the boundaries of the compactified spacetime – see for
example the boundaries on the “right side” in the Penrose diagram of the
Schwarzschild—Kruskal spacetime in Fig. 3, Sect. 2.4, or the Penrose com-
pactified diagram of boost-rotation symmetric spacetimes in Fig. 13, Sect. 11.
(The details of the conformal rescaling of the metric and resulting diagrams
are given in [26,27] and in standard textbooks, for example [18,19,30].) In
the de Sitter spacetime there are only past and future conformal infinities
J−,J +, both being spacelike (cf. the Penrose diagram of the “cosmological”
Robinson–Trautman solutions in Fig. 11, Sect. 10); the conformal infinity in
anti de Sitter spacetime is timelike.

These three spacetimes of constant curvature offer many basic insights
which have played a most important role elsewhere in relativity. To give just
a few examples (see e.g. [26,27]): both the particle (cosmological) horizons
and the event horizons for geodesic observers are well illustrated in the de
Sitter spacetime; the Cauchy horizons in the anti de Sitter space; and the
simplest acceleration horizons in Minkowski space (hypersurfaces t2 = z2 in
Fig. 12, Sect. 11). With the de Sitter spacetime one learns (by considering
different cuts through the 4-dimensional hyperboloid) that the concept of
an “open” or “closed” universe depends upon the choice of a spacelike slice
through the spacetime. There is perhaps no simpler way to understand that
Einstein’s field equations are of local nature, and that the spacetime topology
is thus not given a priori, than by considering the following construction
in Minkowski spacetime. Take the region given in the usual coordinates by
|x| ≤ 1, |y| ≤ 1, |z| ≤ 1, remove the rest and identify pairs of boundary
points of the form (t, 1, y, z) and (t,−1, y, z), and similarly for y and z. In
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this way the spatial sections are identified to obtain a 3-torus – a flat but
closed manifold.6

The spacetimes of constant curvature have been resurrected as basic are-
nas of new physical theories since their first appearance. After the role of the
de Sitter universe decreased with the refutation of the steady-state cosmol-
ogy, it has inflated again enormously in connection with the theory of early
quasi-exponential phase of expansion of the universe, due to the false-vacuum
state of a hypothetical scalar (inflaton) field(s) (see e.g. [28]). We shall men-
tion the de Sitter space as the asymptotic state of cosmological models with a
nonvanishing Λ (so verifying the “cosmic no-hair conjecture”) in Sect. 10 on
Robinson–Trautman spacetimes. Motivated by its importance in inflationary
cosmologies, several new useful papers reviewing the properties of de Sitter
spacetime have appeared [33,34]; they also contain many references to older
literature. For the most recent work on the quantum structure of de Sitter
space, see [35].

In the last two years, anti de Sitter spacetime has come to the fore in light
of Maldacena’s conjecture [36] relating string theory in (asymptotically) anti
de Sitter space to a non-gravitational conformal field theory on the boundary
at spatial infinity, which is timelike as mentioned above (see, e.g. [37], where
among others, in the Appendix various coordinate systems describing anti de
Sitter spaces in arbitrary dimensions are discussed).

Amazingly, the Minkowski spacetime has recently entered the active new
area of so called pre-big bang string cosmology [38]. String theory is here
applied to the problem of the big bang. The idea is to start from a simple
Minkowski space (as an “asymptotic past triviality”) and to show that it is in
an unstable false-vacuum state, which leads to a long pre-big bangian infla-
tionary phase. This, at later times, should provide a hot big bang. Although
such a scenario has been criticized on various grounds, it has attractive fea-
tures, and most importantly, can be probed through its observable relics [38].

Since it is hard to forecast how the roles of these three spacetimes of
constant curvature will develop in new and exciting theories in the next mil-
lennium, let us better conclude our “just so” notes by stating three “stable”
results of complicated, rigorous mathematical analyses of (the classical) Ein-
stein’s equations.

In their recent treatise [39], Christodoulou and Klainerman prove that
any smooth, asymptotically flat initial data set which is “near flat, Minkowski
data” leads to a unique, smooth and geodesically complete solution of Ein-
6 This very simple point was apparently unknown to Einstein in 1917, although

soon after the publication of his cosmological paper, E. Freundlich and F. Klein
pointed out to him that an elliptical topology (arising from the identification of
antipodal points) could have been chosen instead of the spherical one considered
by Einstein. Although topological questions have been followed with a great in-
terest in recent decades, the chapter by Geroch and Horowitz in “An Einstein
Centenary Survey” [31] remains the classic; for more recent texts, see for example
[32] and references therein.
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stein’s vacuum equations with vanishing cosmological constant. This demon-
strates the stability of the Minkowski space with respect to nonlinear (vac-
uum) perturbations, and the existence of singularity-free, asymptotically flat
radiative vacuum spacetimes. Christodoulou and Klainerman, however, are
able to show only a somewhat weaker decay of the field at null infinity than is
expected from the usual assumption of a sufficient smoothness at null infinity
in the framework of Penrose (see e.g. [40] for a brief account).

Curiously enough, in the case of the vacuum Einstein equations with a
nonvanishing cosmological constant, a more complete picture has been known
for some time. By using his regular conformal field equations, Friedrich [41]
demonstrated that initial data sufficiently close to de Sitter data develop into
solutions of Einstein’s equations with a positive cosmological constant, which
are “asymptotically simple” (with a smooth conformal infinity), as required
in Penrose’s framework. More recently, Friedrich [42] has shown the existence
of asymptotically simple solutions to the Einstein vacuum equations with a
negative cosmological constant. For the latest review of Friedrich’s thorough
work on asymptotics, see [43].

Summarizing, thanks to these profound mathematical achievements we
know that the Minkowski, de Sitter, and anti de Sitter spacetimes are the
solutions of Einstein’s field equations which are stable with respect to general,
nonlinear (though “weak” in a functional sense) vacuum perturbations. A
result of this type is not known for any other solution of Einstein’s equations.

1.4 On the Interpretation and Characterization of Metrics

Suppose that a metric satisfying Einstein’s field equations is known in some
region of spacetime and in a given coordinate (reference) system xμ. A funda-
mental question, frequently “forgotten” to be addressed in modern theories
which extend upon general relativity, is whether the metric tensor gαβ(xμ)
is a measurable quantity. Classical general relativity offers (at least) three
ways of giving a positive answer, depending on what objects are considered
as “primitive tools” to perform the measurements. The first, elaborated and
emphasized primarily by Møller [44], employs standard rigid rods in the mea-
surements. However, a “rigid rod” is not really a simple primitive concept.
The second procedure, due to Synge [45], accepts as the basic concepts a
“particle” and a “standard clock”. If xμ and xμ + dxμ are two nearby events
contained in the worldline of a clock, then the separation (the spacetime in-
terval) between the events is equal to the interval measured by the clock. The
main drawback of this approach appears to lie in the fact that it does not
explain why the same functions gαβ(xμ) describe the behavior of the clock as
well as paths of free particles, as explained in more detail by Ehlers, Pirani
and Schild [46], in the motivation for their own axiomatic but constructive
procedure for setting up the spacetime geometry. Their method, inspired by
the work of Weyl and others, uses neither rods nor clocks, but instead, light
rays and freely falling test particles, which are considered as basic tools for
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measuring the metric and determining the spacetime geometry. (For a simple
description of how this can be performed, see exercise 13.7 in [18]; for some
new developments which build upon, among others, the Ehlers-Pirani-Sachs
approach, see [47].) After indicating that the metric tensor is a measurable
quantity let us briefly turn to the role of spacetime coordinates.

In special relativity there are infinitely many global inertial coordinate
systems labelling events in the Minkowski manifold IR4; they are related by el-
ements of the Poincaré group. The inertial coordinates labels X0, X1, X2, X3

of a given event do not thus have intrinsic meaning. However, the space-
time interval between two events, determined by the Minkowski metric ημν ,
represents an intrinsic property of spacetime. Since the Minkowski metric
is so simple, the differences between inertial coordinates can have a metri-
cal meaning (recall Einstein’s reply to Abraham mentioned in Sect. 1.2). In
principle, however, both in special and general relativity, it is the metric,
the line element, which exhibits intrinsically the geometry, and gives all rel-
evant information. As Misner [48] puts it, if you write down for someone the
Schwarzschild metric in the “canonical” form (equation (2) in Sect. 2.2) and
receive the reaction “that [it] tells me the gμν gravitational potentials, now
tell me in which (t, r, θ, ϕ) coordinate system they have these values?”, then
there are two valid responses: (a) indicate that it is an indelicate and unneces-
sary question, or (b) ignore it. Clearly, the Schwarzschild metric describes the
geometrical properties of the coordinates used in (2). For example, it implies
that worldlines with fixed r, θ, ϕ are timelike at r > 2M , orthogonal to the
lines with t = constant. It determines local null cones (given by ds2 = 0), i.e.
the causal structure of the spacetime. In addition, in Schwarzschild coordi-
nates the metric (2) indicates how to measure the radial coordinate of a given
event, because the proper area of the sphere going through the event is given
just by the Euclidean expression 4πr2 (r is thus often called “the curvature
coordinate”). On each sphere the angular coordinates θ, ϕ have the same
meaning as on a sphere in Euclidean space. The Schwarzschild coordinate
time t, geometrically preferred by the timelike (for r > 2M) Killing vector,
which is just equal to ∂/∂t, can be measured by radar signals sent out from
spatial infinity (r � 2M) where t is the proper time (see e.g. [18]). The coor-
dinates used in (2) are in fact “more unique” than the inertial coordinates in
Minkowski spacetime, because the only possible continuous transformations
preserving the form (2) are rigid rotations of a sphere, and t → t + constant.
Such a simple interpretation of coordinates is exceptional. However, the sim-
ple case of the Schwarzschild metric clearly demonstrates that all intrinsic
information is contained in the line element.

It is interesting, and for some purposes useful, to consider not just one
Schwarzschild metric with a given mass M but the family of such metrics
for all possible M . In order to cover also the future event horizon let us
describe the metrics by using Eddington–Finkelstein ingoing coordinates as
in equation (4), Sect. 2.3. This equation can be interpreted as a family of
metrics with various values of M given on a fixed background manifold M̄1,
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with v ∈ IR, r ∈ (0,∞), and θ ∈ [0, π], ϕ ∈ [0, 2π). Alternatively, however, we
may use, for example, the Kruskal null coordinates Ũ , Ṽ in which the metric
is given by equation (6), Sect. 2.3, with Ũ = V − U, Ṽ = V + U . We may
then consider metrics on a background manifold M̄2 given by Ũ ∈ IR, Ṽ ∈
(0,∞), θ ∈ [0, π], and ϕ ∈ [0, 2π), which corresponds to M̄1. However, these
two background manifolds are not the same: the transformation between the
Eddington–Finkelstein coordinates and the Kruskal coordinates is not a map
from M̄1 to M̄2 because it depends on the value of mass M . Therefore,
the “background manifold” used frequently in general relativity, for example
in problems of conservation of energy, or in quantum gravity, is not defined
in a natural, unique manner. The above simple pedagogical observation has
recently been made in connection with gauge fixing in quantum gravity by
Háj́ıček [49] in order to explain the old insight by Bergmann and Komar, that
the gauge group of general relativity is much larger than the diffeomorphism
group of one manifold. To identify points when working with backgrounds,
one usually fixes coordinates in all solution manifolds by some gauge condi-
tion, and identifies those points of all these manifolds which have the same
value of the coordinates.

Returning back to a single solution (M, gαβ), described by a manifold M
and a metric gαβ in some coordinates, a notorious (local) “equivalence prob-
lem” often arises. A given (not necessarily global) solution has the variety of
representations which equals the variety of choices of a 4-dimensional coor-
dinate system. Transitions from one choice to another are isomorphic with
the group of 4-dimensional diffeomorphisms which expresses the general co-
variance of the theory.7 Given another set of functions g′

αβ(x′γ) which satisfy
Einstein’s equations, how do we learn that they are not just transformed com-
ponents of the metric gαβ(xγ)? In 1869 E. B. Christoffel raised a more general
question: under which conditions is it possible to transform a quadratic form
gαβ(xγ)dxαdxβ in n-dimensions into another such form g′

αβ(x′γ)dx′αdx′β by
means of smooth transformation xγ(x′κ)? As Ehlers emphasized in his paper

7 As pointed out by Kretschmann soon after the birth of general relativity, one can
always make a theory generally covariant by taking more variables and insert-
ing them as new dynamical variables into the (enlarged) theory. Thus, standard
Yang–Mills theory is covariant with respect to the transformations of Yang–Mills
potentials, corresponding to a particular group, say SU(2). However, the the-
ory is usually formulated on a fixed background spacetime with a given metric.
The evolution of a dynamical Yang–Mills solution is thus “painted” on a given
spacetime. When the metric – the gravitational field – is incorporated as a dy-
namical variable in the Einstein–Yang–Mills theory, the whole spacetime metric
and Yang–Mills field are “built-up” from given data (cf. the article by Friedrich
and Rendall in this volume). The resulting theory is covariant with respect to
a much larger group. The dual role of the metric, determined only up to 4-
dimensional diffeomorphisms, makes the character of the solutions of Einstein’s
equations unique among solutions of other field theories, which do not consider
spacetime as being dynamical.
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[50] on the meaning of Christoffel’s equivalence problem in modern field the-
ories, Christoffel’s results apply to metrics of arbitrary signature, and can be
thus used directly in general relativity. Without going into details let us say
that today the solution to the equivalence problem as presented by Cartan is
most commonly used. For both metrics gαβ and g′

αβ one has to find a frame
(four 1-forms) in which the frame metric is constant, and find the frame com-
ponents of the Riemann tensor and its covariant derivatives up to – possibly
– the 10th order. The two metrics gαβ and g′

αβ are then equivalent if and
only if there exist coordinate and Lorentz transformations under which one
whole set of frame components goes into the other. In a practical algorithm
given by Karlhede [51], recently summarized and used in [52], the number of
derivations required is reduced.

A natural first idea of how to solve the equivalence problem is to employ
the scalar invariants from the Riemann tensor and its covariant derivatives.
This, however, does not work. For example, in all Petrov type N and III
nonexpanding and nontwisting solutions all these invariants vanish as shown
recently (see Sect. 8.2), as they do in Minkowski spacetime.

However, even without regarding invariants, at present much can be learnt
about an exact solution (at least locally) in geometrical terms, without ref-
erence to special coordinates. This is thanks to the progress started in the
late 1950s, in which the group of Pascual Jordan in Hamburg has played the
leading role, with Jürgen Ehlers as one of its most active members. Ehlers’
dissertation8 [54] from 1957 is devoted to the characterization of exact solu-
tions.

The problem of exact solutions also forms the content of his contribution
to the Royaumont GR-conference [55], as well as his plenary talk in the Lon-
don GR-conference [56]. A detailed description of the results of the Hamburg
group on invariant geometrical characterization of exact solutions by using
and developing the Petrov classification of Weyl’s tensors, groups of isome-
tries, and conformal transformations are contained in the first paper [57] in
the (today “golden oldies”) series of articles published in the “Abhandlungen
der Akademie der Wissenschaften in Mainz”. An English version, in a some-
what shorter form, was published by Ehlers and Kundt [53] in the “classic”
1962 book “Gravitation: An Introduction to Current Research” compiled by
L. Witten. (We shall meet these references in the following sections.) In the
second paper of the “Abhandlungen” [58], among others, algebraically spe-
cial vacuum solutions are studied, using the formalism of the 2-component
spinors, and in particular, geometrical properties of the congruences of null
rays are analyzed in terms of their expansion, twist, and shear.
8 The English translation of the title of the dissertation reads: “The construction

and characterization of the solutions of Einstein’s gravitational field equations”.
In [53] the original German title is quoted, as in our citation [54], but “of the
solutions” is erroneously omitted. This error then reemerges in the references in
[19].
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These tools became essential for the discovery by Roy Kerr in 1963 of the
solution which, when compared with all other solutions of Einstein’s equa-
tions found from the beginning of the renaissance of general relativity in the
late 1950s until today, has played the most important role. As Chandrasekhar
[59] eloquently expresses his wonder about the remarkable fact that all sta-
tionary and isolated black holes are exactly described by the Kerr solution:
“This is the only instance we have of an exact description of a macroscopic
object. Macroscopic objects, as we see them all around us, are governed by
a variety of forces, derived from a variety of approximations to a variety of
physical theories. In contrast, the only elements in the construction of black
holes are our basic concepts of space and time ...” The Kerr solution can also
serve as one of finest examples in general relativity of “the incredible fact
that a discovery motivated by a search after the beautiful in mathematics
should find its exact replica in Nature...” [60].

The technology developed in the classical works [53,57], and in a number
of subsequent contributions, is mostly concerned with the local geometrical
characterization of exact spacetime solutions. A well-known feature of the
solutions of Einstein’s equations, not shared by solutions in other physical
theories, is that it is often very complicated to analyze their global proper-
ties, such as their extensions, completeness, or topology. If analyzed globally,
almost any solution can tell us something about the basic issues in general
relativity, like the nature of singularities, or cosmic censorship.

1.5 The Choice of Solutions

Since most solutions, when properly analyzed, can be of potential interest,
we are confronted with a richness of material which puts us in danger of men-
tioning many of them, but remaining on a general level, and just enumerating
rather than enlightening. In fact, because of lack of space (and of our under-
standing) we shall have to adopt this attitude in many places. However, we
have selected some solutions, hopefully the fittest ones, and when discussing
their role, we have chosen particular topics to be analyzed in some detail,
and left other issues to brief remarks and references.

Firstly, however, let us ask what do we understand by the term “exact
solution”. In the much used “exact-solution-book” [61], the authors “do not
intend to provide a definition”, or, rather, they have decided that what they
“chose to include was, by definition, an exact solution”. A mathematical
relativist-purist would perhaps consider solutions, the existence of which has
been demonstrated in the works of Friedrich or Christodoulou and Klainer-
man, mentioned at the end of Sect. 1.3, as “good” as the Schwarzschild metric.
Most recently, Penrose [62] presented a strong conjecture which may lead to a
general vacuum solution described in the complicated (complex) formalism of
his twistor theory. Although in this article we do not mean by exact solutions
those just mentioned, we also do not consider as exact solutions only those
explicit solutions which can be written in terms of elementary functions on
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half of a page. We prefer, recalling Feynman, simple “special cases”, but we
also discuss, for example, the late-time behaviour of the Robinson–Trautman
solutions for which rigorously convergent series expansions can be obtained,
which provide sufficiently rich “special information”.

Concerning the selection of the solutions, the builder of general relativity
and the gravitational field equations (III) himself indicates which solutions
should be preferred [63]: “The theory avoids all internal discrepancies which
we have charged against the basis of classical mechanics... But, it is similar
to a building, one wing of which is made of fine marble (left part of the
equation), but the other wing of which is built of low grade wood (right side
of equation). The phenomenological representation of matter is, in fact, only
a crude substitute for a representation which would correspond to all known
properties of matter. There is no difficulty in connecting Maxwell’s theory...
so long as one restricts himself to space, free of ponderable matter and free
of electric density...”

Of course, Einstein was not aware when he was writing this of Yang–
Mills–Higgs fields, or of the dilaton field, etc. However, remaining on the
level of field theories with a clear classical meaning, his view has its strength
and motivates us to prefer (electro)vacuum solutions. A physical interpre-
tation of the vacuum solutions of Einstein’s equations have been reviewed
in papers by Bonnor [64], and Bonnor, Griffiths and MacCallum [65] five
years ago. Our article, in particular in emphasizing and describing the role
of solutions in giving rise to various concepts, conjectures, and methods of
solving problems in general relativity, and in the astrophysical impacts of the
solutions, is oriented quite differently, and gives more detail. However, up to
some exceptions, like, for example, metrics for an infinite line-mass or plane,
which are discussed in [64], and new solutions which have been discovered
after the reviews [64,65] appeared as, for example, the solution describing a
rigidly rotating thin disk of dust, our choice of solutions is similar to that of
[64,65].

In selecting particular topics for a more detailed discussion we will be
led primarily by following overlapping aspects: (i) the “commonly acknowl-
edged” significance of a solution – we will concentrate in particular on the
Schwarzschild, the Kerr, the Taub-NUT, and plane wave solutions, and (ii)
the solutions and their properties that I (and my colleagues) have been di-
rectly interested in, such as the Reissner–Nordström metric, vacuum solu-
tions outside rotating disks, or radiative solutions such as cylindrical waves,
Robinson–Trautman solutions, and the boost-rotation symmetric solutions.
Some of these have also been connected with the interests of Jürgen Ehlers,
and we shall indicate whenever we are aware of this fact.

Vacuum cosmological solutions are discussed in less detail than they de-
serve. A possible excuse – from the point of view of being a relativist, a rather
unfair one – could be that a special recent issue of Reviews of Modern Physics
(Volume 71, 1999), marking the Centennial of the American Physical Soci-
ety, contains discussion of the Schwarzschild, the Reissner–Nordström and
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other black hole solutions, and even remarks on the work of Bondi et al. [66]
on radiative solutions, but among the cosmological solutions only the stan-
dard models are mentioned. A real reason is the author’s lack of space, time,
and energy. In the concluding remarks we will try to list at least the most
important solutions (not only the Friedmann models!) which have not been
“selected” and give references to the literature in which more information
can be found.

1.6 The Outline

Since the titles of the following sections characterize the contents rather
specifically, we restrict ourselves to only a few explanatory remarks. In our
discussion of the Schwarschild metric, after mentioning its role in the solar
system, we indicate how the Schwarzschild solution gave rise to such concepts
as the event horizon, the trapped surface, and the apparent horizon. We pay
more attention to the concept of a bifurcate Killing horizon, because this
is usually not treated in textbooks, and in addition, Jürgen Ehlers played
a role in its first description in the literature. Another point which has not
received much attention is Penrose’s nice presentation of evidence against
Lorentz-covariant field theoretical approaches to gravity, based on analysis
of the causal structure of the Schwarzschild spacetime. Among various astro-
physical implications of the Schwarzschild solution we especially note recent
suggestions which indicate that we may have evidence of the existence of
event horizons, and of a black hole in the centre of our Galaxy.

The main focus in our treatment of the Reissner–Nordström metric is
directed to the instability of the Cauchy horizon and its relation to the cosmic
censorship conjecture. We also briefly discuss extreme black holes and their
role in string theory.

About the same amount of space as that given to the Schwarzschild so-
lution is devoted to the Kerr metric. After explaining a few new concepts
the metric inspired, such as locally nonrotating frames and ergoregions, we
mention a number of physical processes which can take place in the Kerr back-
ground, including the Penrose energy extraction process, and the Blandford–
Znajek mechanism. In the section on the astrophysical evidence for a Kerr
metric, the main attention is paid to the broad iron line, the character of
which, as most recent observations indicate, is best explained by assuming
that it originates very close to a maximally rotating black hole. The dis-
cussion of recent results on black hole uniqueness and on multi-black hole
solutions concludes our exposition of spacetimes representing black holes. In
the section on axisymmetric fields and relativistic disks a brief survey of var-
ious static solutions is first given, then we concentrate on relativistic disks
as sources of the Kerr metric and other stationary fields; in particular, we
summarize briefly the recent work on uniformly rotating disks.
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An intriguing case of Taub-NUT space is introduced by a new constructive
derivation of the solution. Various pathological features of this space are then
briefly listed.

Going over to radiative spacetimes, we analyze in some detail plane waves
– also in the light of the thorough study by Ehlers and Kundt [53]. Some
new developments are then noted, in particular, impulsive waves generated
by boosting various “particles”, their symmetries, and recent use of the
Colombeau algebra of generalized functions in the analyses of impulsive
waves. A fairly detailed discussion is devoted to various effects connected
with colliding plane waves.

In our treatment of cylindrical waves we concentrate in particular on two
issues: on the proof that these waves provide explicitly given spacetimes,
which admit a smooth global null infinity, even for strong initial data within
a (2+1)-dimensional framework; and on the role that cylindrical waves have
played in the first construction of a midisuperspace model in quantum grav-
ity. Various other developments concerning cylindrical waves are then sum-
marized only telegraphically.

A short section on Robinson–Trautman solutions points out how these
solutions with a nonvanishing cosmological constant can be used to give an
exact demonstration of the cosmic no-hair conjecture under the presence of
gravitational radiation, and also of the existence of an event horizon which
is smooth but not analytic.

As the last class of radiative spacetimes we analyze the boost-rotation
symmetric solutions representing uniformly accelerated objects. They play a
unique role among radiative spacetimes since they are asymptotically flat,
in the sense that they admit global smooth sections of null infinity. And as
the only known radiative solutions describing finite sources they can provide
expressions for the Bondi mass, the news function, or the radiation patterns in
explicit forms. They have also been used as test-beds in numerical relativity,
and as the model spacetimes describing the production of black hole pairs in
strong fields.

Vacuum cosmological solutions such as the vacuum Bianchi models and
Gowdy solutions are mentioned, and their significance in the development of
general relativity is indicated in the last section. Special attention is paid to
their role in understanding the behaviour of a general model near an initial
singularity.

In the concluding remarks, several important, in particular non-vacuum
solutions, which have not been included in the main body of the paper, are
at least listed, together with some relevant references. A few remarks on the
possible future role of exact solutions ends the article.

Although we give over 360 references in the bibliography, we do not at
all pretend to give all relevant citations. When discussing more basic facts
and concepts, we quote primarily textbooks and monographs. Only when
mentioning more recent developments do we refer to journals. The complete
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titles of all listed references will hopefully offer the reader a more complete
idea of the role the explicit solutions have played on the relativistic stage and
in the astrophysical sky.

2 The Schwarzschild Solution

In his thorough “Survey of General Relativity Theory” [67], Jürgen Ehlers
begins with an empirical motivation of the theory, goes in depth and detail
through his favourite topics such as the axiomatic approach, kinetic theory,
geometrical optics, approximation methods, and only in the last section turns
to spherically symmetric spacetimes. As T. S. Eliot says, “to make an end is
to make a beginning – the end is where we start from”, and so here we start
with a few remarks on spherical symmetry.

2.1 Spherically Symmetric Spacetimes

In the early days of general relativity spherical symmetry was introduced in
an intuitive manner. It is because of the existence of exact solutions which
are singular at their centres (such as the Schwarzschild or the Reissner–
Nordström solutions), and a realization that spherically symmetric, topolog-
ically non-trivial smooth spacetimes without any centre may exist [68], that
today the group-theoretical definition of spherical symmetry is preferred (for
a detailed analysis, see e.g. [19,26,67]).

Following Ehlers [67], we define a spacetime (M, gαβ) to be spherically
symmetric if the rotation group SO3 acts on (M, gαβ) as an isometry group
with simply connected, complete, spacelike, 2-dimensional orbits. One can
then prove the theorem [67,69] that a spherically symmetric spacetime is the
direct product M = S2 × N , where S2 is the 2-sphere manifold with the
standard metric gS on the unit sphere; and N is a 2-dimensional manifold
with a Lorentzian (indefinite) metric gN , and with a scalar r such that the
complete spacetime metric gαβ is “conformally decomposable”, i.e. r−2gαβ

is the direct sum of the 2-dimensional parts gN and gS . Leaving further
technicalities aside (see e.g. [26,67,69]) we write down the final spherically
symmetric line element in the form

ds2 = −e2φdt2 + e2λdr2 + r2(dθ2 + sin2 θ dϕ2), (1)

where (following [67]) we permit φ(r, t) and λ(r, t) to have an imaginary part
iπ/2 so that the signs of dt2 and dr2 in (1), and thus the role of r and t
as space- and time- coordinates may interchange (a lesson learned from the
vacuum Schwarzschild solutions – see below). The “curvature coordinate”
r is defined invariantly by the area, 4πr2, of the 2-spheres r = constant,
t = constant. There is no a priori relation between r and the proper distance
from the centre (if there is one) to the spherical surface.
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2.2 The Schwarzschild Metric and Its Role in the Solar System

Starting from the line element (1) and imposing Einstein’s vacuum field equa-
tions, but allowing spacetime to be in general dynamical, we are led uniquely
(cf. Birkhoff’s theorem discussed e.g. in [18,26]) to the Schwarzschild metric

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2 (
dθ2 + sin2 θ dϕ2) , (2)

where M = constant has to be interpreted as a mass, as test particle orbits
show. The resulting spacetime is static at r > 2M (no spherically symmetric
gravitational waves exist), and asymptotically flat at r →∞.

Undoubtedly, the Schwarzschild solution, describing the exterior gravi-
tational field of an arbitrary – static, oscillating, collapsing or expanding –
spherically symmetric body of (Schwarzschild) mass M , is among the most
influential solutions of the gravitational field equations, if not of any type
of field equations invented in the 20th century. It is the first exact solution
of Einstein’s equations obtained – by K. Schwarzschild in December 1915,
still before Einstein’s theory reached its definitive form and, independently,
in May 1916, by J. Droste, a Dutch student of H. A. Lorentz (see [70] for
comprehensive survey).

However, in its exact form (involving regions near r ≈ 2M) the metric (2)
has not yet been experimentally tested (a more optimistic recent suggestion
will be mentioned in Sect. 2.6). When in 1915 Einstein explained the perihe-
lion advance of Mercury, he found and used only an approximate (to second
order in the gravitational potential) spherically symmetric solution. In order
to find the value of the deflection of light passing close to the surface of the
Sun, in his famous 1911 Prague paper, Einstein used just the equivalence
principle within his “Prague gravity theory”, based on the variable velocity
of light. Then, in 1915, he obtained this value to be twice as big in general
relativity, when, in addition to the equivalence principle, the curvature of
space (determined from (2) to first order in M/r) was taken into account.

Despite the fact that for the purpose of solar-system observations the
Schwarzschild metric in the form (2) is, quoting [18], “too accurate”, it has
played an important role in experimental relativity. Eddington, Robertson
and others introduced the method of expanding the Schwarzschild metric
at the order beyond Newtonian theory, and then multiplying each post-
Newtonian term by a dimensionless parameter which should be determined by
experiment. These methods inspired the much more powerful PPN (“Para-
metrized post-Newtonian”) formalism which was developed at the end of the
1960s and the beginning of the 1970s for testing general relativity and alter-
native theories of gravity. It has been very effectively used to compare general
relativity with observations (see e.g. [18,71,72] and references therein). In or-
der to gain at least some concrete idea, let us just write down the simplest
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generalization of (2), namely the metric

ds2 = −
[
1− 2M

r
+ 2 (β − γ)

M2

r2

]
dt2 +

(
1 + 2γ

M

r

)
dr2

+r2 (
dθ2 + sin2 θ dϕ2) , (3)

which is obtained by expanding the metric (2) in M/r up to one order beyond
the Newtonian approximation, and multiplying each post-Newtonian term
by dimensionless parameters which distinguish the post-Newtonian limits of
different metric theories of gravity, and should be determined experimentally.
(In general, one needs not just two but ten PPN parameters [18,71,72].) In
Einstein’s theory: β = γ = 1. Calculating from metric (3) the advance of the
pericentre of a test particle orbiting a central mass M on an ellipse with semi-
major axis a and eccentricity e, one finds Δφ = 1

3 (2+2γ−β)6πM/[a(1−e2)],
whereas the total deflection angle of electromagnetic waves passing close to
the surface of the body is Δψ = 2(1 + γ)M/r0, where r0 is the radius of
closest approach of photons to the central body.

Measurements of the deflection of radio waves and microwaves by the Sun
(recently also of radio waves by Jupiter) at present restrict γ to 1

2 (1 + γ) =
1.0001±0.001 [71,72]. Planetary radar rangings, mainly to Mercury, give from
the perihelion shift measurements the result (2γ +2−β)/3 = 1.00±0.002, so
that β = 1.000± 0.003, whereas the measurements of periastron advance for
the binary pulsar systems such as PSR 1913+16 implied agreement with Ein-
stein’s theory to better than about 1% (see e.g. [71,72] for reviews). There are
other solar-system experiments verifying the leading orders of the Schwarz-
schild solution to a high accuracy, such as gravitational redshift, signal retar-
dation, or lunar geodesic precession. A number of advanced space missions
have been proposed which could lead to significant improvements in values of
the PPN parameters, and even to the measurements of post-post-Newtonian
effects [72].

Hence, though in an approximate form, the Schwarzschild solution has
had a great impact on experimental relativity. In addition, the observational
effects of gravity on light propagation in the solar system, and also today
routine observations of gravitational lenses in cosmological contexts [73], have
significantly increased our confidence in taking seriously similar predictions
of general relativity in more extreme conditions.

2.3 Schwarzschild Metric Outside a Collapsing Star

I recall how Roger Penrose, at the beginning of his lecture at the 1974 Erice
Summer School on gravitational collapse, placed two figures side by side. The
first illustrated schematically the bending of light rays by the Sun (surpris-
ingly, Penrose did not write “Prague 1911” below the figure). I do not remem-
ber exactly his second figure but it was similar to Fig. 1 below: the spacetime
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EVENT HORIZON

TRAPPED SURFACES

SURFACE OF STAR

SINGULARITY r = 0

O

P

Q

OUTGOING
  PHOTON

INFALLING
  PHOTON
v = const.

r = 2 M

Fig. 1. The gravitational collapse of a spherical star (the interior of the star is
shaded). The light cones of the three events, O, P , Q, at the centre of the star, and
of the three events outside the star are illustrated. The event horizon, the trapped
surfaces, and the singularity formed during the collapse are also shown. Although
the singularity appears to lie in a “time direction”, from the character of the light
cone outside the star but inside the event horizon it is seen that it has a spacelike
character.

diagram showing spherical gravitational collapse through the Schwarzschild
radius into a spherical black hole.

It is in all modern books on general relativity that the Schwarzschild
radius at Rs = 2M is the place where Schwarzschild coordinates t, r are
unsuitable, and that metric (2) has a coordinate singularity but not a physi-
cal one. One has to introduce other coordinates to extend the Schwarzschild
metric through Rs. In order to describe all spacetime outside a collapsing
spherical body it is advantageous to use ingoing Eddington–Finkelstein co-
ordinates (v, r, θ, ϕ) where v = t + r + 2M log(r/2M − 1). Metric (2) takes
the form

ds2 = −
(

1− 2M
r

)
dv2 + 2dvdr + r2 (

dθ2 + sin2 θ dϕ2) , (4)

(v, θ, ϕ) = constant are ingoing radial null geodesics. Figure 1, plotted in
these coordinates, demonstrates well several basic concepts and facts which
were introduced and learned after the end of 1950s when a more complete un-
derstanding of the Schwarzschild solution was gradually achieved. The metric
(4) holds only outside the star, there will be another metric in its interior, for
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example the Oppenheimer–Snyder collapsing dust solution (i.e. a portion of a
collapsing Friedmann universe), but the precise form of the interior solution
is not important at the moment. Consider a series of flashes of light emitted
from the centre of the star at events O,P, Q (see Fig. 1) and assume that
the stellar material is transparent. As the Sun has a focusing effect on the
light rays, so does matter during collapse. As the matter density becomes
higher and higher, the focusing effect increases. At event P a special wave-
front will start to propagate, the rays of which will emerge from the surface
of the star with zero divergence, i.e. the null vector kα = dxα/dw, w being
an affine parameter, tangent to null geodesics, satisfies kα

;α = 0. The wave-
front then “stays” at the hypersurface r = 2M in metric (4), and the area of
its 2-dimensional cross-section remains constant. The null hypersurface rep-
resenting the history of this critical wavefront is the (future) event horizon.
Note that the light cones turn more and more inwards as the event horizon is
approached. They become tangential to the horizon in such a way that radial
outgoing photons stay at r = 2M whereas ingoing photons fall inwards, and
will eventually reach the curvature singularity at r = 0. As Fig. 1 indicates,
wavefronts emitted still later than the critical one, as for example that emit-
ted from event Q, will be focused so strongly that their rays will start to
converge, and will form (closed) trapped surfaces. The light cones at trapped
surfaces are so turned inwards that both ingoing and outgoing radial rays
converge, and their area decreases.

Consider a family of spacelike hypersurfaces Σ(τ) foliating spacetime (τ
is a time coordinate, e.g. v − r). The boundary of the region of Σ(τ) which
contains trapped surfaces lying in Σ(τ) is called the apparent horizon in Σ(τ).

In general, the apparent horizon is different from the intersection of the
event horizon with Σ(τ), as a nice simple example (based again on an exact
solution) due to Hawking [74] shows. Assume that after the spherical collapse
of a star a spherical thin shell of mass m surrounding the star collapses
and eventually crashes at the singularity at r = 0 (Fig. 2). In the vacuum
region inside the shell there is the Schwarzschild metric (4) with mass M ,
and outside the shell with mass M +m. Hence the apparent horizon on Σ(τ1)
will be at r = 2M and will remain there until Σ(τ2) when it discontinuously
jumps to r = 2(M + m). One can determine the apparent horizon on a
given hypersurface. In order to find the event horizon one has to know the
whole spacetime solution. The future event horizon separates events which
are visible from future infinity, from those which are not, and thus forms the
boundary of a black hole.

From the above example of a shell collapsing onto a Schwarzschild black
hole we can also learn about the “teleological” nature of the horizon: the mo-
tion of the horizon depends on what will happen to the horizon in the future
(whether a collapsing shell will cross it or not). This teleological behaviour of
the horizon has later been discovered in a variety of astrophysically realistic
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situations such as the behaviour of a horizon perturbed by a mass orbiting a
black hole (see [75] for enlightening discussions of such effects).

By studying the Schwarzschild solution and spherical collapse it became
evident that one has to turn to global methods to gain a full understanding of
general relativity. The intuition acquired from analyzing the Schwarzschild
metric helped crucially in defining and understanding such concepts as the
trapped surface, the event horizon, or the apparent horizon in general situ-
ations without symmetry. Nowadays these concepts are explained in several
advanced textbooks and monographs (e.g. [18,19,26,32,76]).

Following from the example of spherical collapse one is led to ask whether
generic gravitational collapses lead to spacetime singularities and whether
these are always surrounded by an event horizon. The Penrose-Hawking sin-
gularity theorems [19,26] show that singularities do arise under quite generic
circumstances (the occurrence of a closed trapped surface is most significant
for the appearance of a singularity). The second question is the essence of
the cosmic censorship hypothesis. Various exact solutions have played a role
in attempts to “prove” or “disprove” this “one of the most important issues”
of classical relativity. We shall meet it in several other places later on, in
particular in Sect. 3.1. There a more detailed formulation is given.

EVENT HORIZON

APPARENT
 HORIZON

r = 2 (M+m)SINGULARITY

COLLAPSING STAR
      OF MASS  MEVENT HORIZON

r = 2 M COLLAPSING SHELL
              OF MASS  m

EVENT HORIZON

APPARENT HORIZON

Fig. 2. The “teleological” behaviour of the event horizon during the gravitational
collapse of a star, followed by the collapse of a shell. The event horizon moves out-
wards because it will be crossed by the shell. The apparent horizon moves outwards
discontinuously (adapted from [74]).
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2.4 The Schwarzschild–Kruskal Spacetime

In the remarks above we considered the Schwarzschild solution outside a
static (possibly oscillating, or expanding from r > 2M) star, and outside
a star collapsing into a black hole. It is not excluded that just these situa-
tions will turn out to be physically relevant. Nevertheless, in connection with
the Schwarzschild metric it would be heretical not to mention the enormous
impact which its maximal vacuum analytic extension into the Schwarzschild–
Kruskal spacetime has had. This is today described in detail in many places
(see e.g. [18,19,26,76]). We need two sets of the Schwarzschild coordinates to
cover the complete spacetime, and we obtain two asymptotically flat spaces,
i.e. the spacetime with two (“right” and “left”) infinities. The metric in
Kruskal coordinates U, V , related to the Schwarzschild r, t (in the regions
with r > 2M) by

U = ±(r/2M − 1)1/2
er/4M cosh (t/4M) ,

V = ±(r/2M − 1)1/2
er/4M sinh (t/4M) , (5)

takes the form

ds2 =
32M3

r
e−r/2M

(
−dV 2 + dU2) + r2 (

dθ2 + sin2 θ dϕ2) . (6)

The introduction of the Kruskal coordinates which remove the singularity of
the Schwarzschild metric (2) at the horizon r = 2M and cover the complete
spacetime manifold (every geodesic either hits the singularity or can be con-
tinued to the infinite values of its affine parameter), was the most influential
example which showed that one has to distinguish carefully between just a
coordinate singularity and the real, physical singularity. It also helped us to
realize that the definition of a singularity itself is a subtle issue in which the
concept of geodesic completeness plays a significant role (see [77] for a recent
analysis of spacetime singularities).

The character of the Schwarzschild–Kruskal spacetime is best seen in the
Penrose diagram given in Fig. 3, in which the spacetime is compactified by
a suitable conformal rescaling of the metric. Both right and left infinities are
represented, and the causal structure is well illustrated because worldlines
of radial light signals (radial null geodesics) are 45-degree lines in the dia-
gram. In particular the black hole region II and a “newly emerged” (as a
consequence of the analytical continuation) white hole region IV (with the
white-hole singularity at r = 0) are exhibited. For more detailed analyses
of the Penrose diagram of the Schwarzschild–Kruskal spacetime the reader
is referred to e.g. [18,19,26,76]. Here we wish to turn in some detail to two
very important concepts in black hole theory which were first understood
by the analytic extension of the Schwarzschild solution, and which are not
often treated in standard textbooks. These are the concepts of the bifurcate
horizon and of the horizon surface gravity. Jürgen Ehlers played a somewhat
indirect, but important and noble part in their introduction into literature.
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r = 0 (past singularity)

r = 0 (future singularity)

r = const. > 2M 
r = 2M 

r = const. > 2M 
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Fig. 3. The Penrose diagram of the compactified Schwarzschild–Kruskal spacetime.
Radial null geodesics are 45-degrees lines. Timelike geodesics reach the future (or
past) timelike infinities i+ (or i−), null geodesics reach the future (or past) null
infinities J + (or J −) and spacelike geodesics lead to spatial infinities i0. (Notice
that at i0 the lines t = constant are tangent to each other – this is often not taken
into account in the literature – see e.g. [26,30].)

These concepts were the main subject of the last work of Robert Boyer
who became one of the victims of a mass murder on August 1, 1966, in
Austin, Texas. Jürgen Ehlers was authorized by Mrs. Boyer to look through
the scientific papers of her husband, and together with John Stachel, pre-
pared posthumously the paper [78] from R. Boyer’s notes. Ehlers inserted his
own discussions, generalized the main theorem on bifurcate horizons, but the
paper [78] was published with R. Boyer as the only author.

In the Schwarzschild spacetime there exists the timelike Killing vector,
∂/∂t, which when analytically extended into all Schwarzschild–Kruskal man-
ifold, becomes null at the event horizon r = 2M , and is spacelike in the
regions II and IV with r < 2M . In Kruskal coordinates it is given by

kα =
(
kV = U/4M, kU = V/4M, kθ = 0, kϕ = 0

)
. (7)

Hence it vanishes at all points with U = V = 0, θ ∈ [0, π], ϕ ∈ [0, 2π).
These points, forming a spacelike 2-sphere which we denote B (in Schwarz-
schild coordinates given by r = 2M, t = constant), are fixed points of the
1-dimensional group G of isometries generated by kα (see Fig. 3). At the
event horizon the corresponding 1-dimensional orbits are null geodesics, with
kα being a tangent vector. However, since kα vanishes at B, these orbits are
incomplete.

This (and similar observations for other black hole solutions) motivated
a general analysis of the bifurcate Killing horizons given in [78]. There it
is proven for spacetimes admitting a general Killing vector field ξα, which
generates a 1-dimensional group of isometries, that (i) a 1-dimensional orbit
is a complete geodesic if the gradient of the square ξ2 vanishes on the orbit,
(ii) if a geodesic orbit is incomplete, then it is null and (ξ2),α �= 0. In addition,
if ξα = dxα/dv (v being the group parameter), the affine parameter along



The Role of Exact Solutions 27

the geodesic is w = eκv, where κ = constant satisfies

(−ξ2),α = 2κξα. (8)

In the Schwarzschild case, with ξα = kα = (∂/∂t)α, and considering the
part V = U of the horizon, we get κ = 1/4M . The relation w = eκv is
just the familiar equation Ṽ = ev/4M , where Ṽ = V + U is the Kruskal null
coordinate and v is the Eddington–Finkelstein ingoing null coordinate used
in (4). (Notice that Ṽ is indeed the affine parameter along the null geodesics
at the horizon V = U .) The quantity κ, first introduced in [78], has become
fundamental in modern black hole theory, and also in its generalizations in
string theory. It is the well-known surface gravity of the black hole horizon.

With κ �= 0, the limit points corresponding to v → −∞, w = 0 are fixed
points of G. (Unless the spacetime is incomplete, there exists a continuation
of each null geodesic beyond these fixed points to w < 0.) One can show
that the fixed points form a spacelike 2-dimensional manifold B, given by
U = V = 0 in the Schwarzschild case; this “bifurcation surface” is a totally
geodesic submanifold. By the original definition [79], a Killing horizon is a G
invariant null hypersurface N on which ξ2 = 0. (A recent definition [80,81]
specifies a Killing horizon to be any union of such hypersurfaces.) If κ �= 0,
at each point of B there is one null direction orthogonal to B which is not
tangent to N̄ = N ∪B. The null geodesics intersecting B in these directions
form another null hypersurface, Ñ , which is also a Killing horizon. The union
N ∪ Ñ is called a bifurcate Killing horizon (Fig. 4).

N
_

N
_N

~

N
~

B

Fig. 4. The bifurcate Killing horizon consisting of two null hypersurfaces Ñ and N̄
which intersect in the spacelike 2-dimensional “bifurcation surface” B.

Bifurcate Killing horizons exist also in flat and other curved spacetimes.
For example, in the boost-rotation symmetric spacetimes (Sect. 11), null
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hypersurfaces z = ±t form the bifurcate Killing horizon corresponding to the
boost Killing vector; B, given by z = t = 0, is then not compact. (As in the
Schwarzschild–Kruskal spacetime, a bifurcate Killing horizon locally divides
the spacetime into four wedges.) However, the first motivation for analyzing
Killing horizons came from the black hole solutions.

Both Killing horizons and surface gravity play an important role in black
hole thermodynamics and quantum field theory on curved backgrounds [82],
in particular in their two principal results: the Hawking effect of particle cre-
ation by black holes; and the Unruh effect showing that a thermal bath of
particles will be seen also by a uniformly accelerated observer in flat space-
time when the quantum field is in its vacuum state with respect to inertial
observers. Recently, new results were obtained [83] which support the view
that a spacetime representing the final state of a black hole formed by collapse
has indeed a bifurcate Killing horizon, or the Killing horizon is degenerate
(κ = 0).

2.5 The Schwarzschild Metric as a Case
Against Lorentz-Covariant Approaches

There are many other issues on which the Schwarzschild solution has made an
impact. Some of astrophysical applications will be very briefly mentioned later
on. As the last theoretical point in this section I would like to discuss in some
detail the causal structure of the Schwarzschild spacetime including infinity.
By analyzing this structure, Penrose [84] presented evidence against various
Lorentz (Poincaré)-covariant field theoretical approaches, which regard the
physical metric tensor g to be not much different from any other tensor
in Minkowski spacetime with flat metric η (see e.g. [85,86]). I thought it
appropriate to mention this point here, since Jürgen Ehlers, among others,
certainly does not share a field theoretical viewpoint.

The normal procedure of calculating the metric g in these approaches is
from a power series expansion of Lorentz-covariant terms (in quantum the-
ory this corresponds to an infinite summation of Feynman diagrams). The
derived field propagation has to follow the true null cones of the curved metric
g instead of those of η. However, as Penrose shows, in a satisfactory theory
the null cones defined by g should not extend outside the null cones de-
fined by η, or “the causality defined by g should not violate the background
η-causality”. Following [84], let us write this condition as g < η. Now at
first sight we may believe that g < η is satisfied in the Schwarzschild field
since its effect is to “slow down” the velocity of light (cf. “signal retarda-
tion” mentioned in 2.2). However, in the field-theoretical approaches one of
the main emphasis is in a consistent formulation of scattering theory. This
requires a good behaviour at infinity. But with the Schwarzschild metric, null
geodesics with respect to metric g “infinitely deviate” from those with respect
to η: for example, the radial outgoing g null geodesics θ, ϕ = constant, and
u = t − r − 2M log(r/2M − 1) = constant at r → ∞ go “indefinitely far”
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into the retarded time t − r of η, and hence, do not correspond to outgoing
η-null geodesics t − r = constant. One can try to use a different flat metric
associated with the Schwarzschild metric g which does not lead to patho-
logical behaviour at infinity, but then it turns out that g < η is violated
locally. In fact, Penrose [84] proves the theorem, showing that there is an
essential incompatibility between the causal structures in the Schwarzschild
and Minkowski spacetimes which appears either asymptotically or locally.

This incompatibility is easily understood with the exact Schwarzschild
solution, but it is generic, since one is concerned only with the behaviour of
the space at large distances from a positive-mass source, i.e. with the causal
properties in the neighbourhood of spacelike infinity i0.

In the present post-Minkowskian approximation methods for the gener-
ation of gravitational waves by relativistic sources, a suitable (Bondi-type)
coordinate system [66] is constructed at all orders in the far wave zone, which
in particular corrects for the logarithmic deviation of the true light cones with
respect to the coordinate flat light cones (cf. contribution by L. Blanchet in
this volume).

2.6 The Schwarzschild Metric and Astrophysics

In his introductory chapter “General Relativity as a Tool for Astrophysics”
for the Seminar in Bad Honnef in 1996 [87], Jürgen Ehlers remarks that “The
interest of black holes for astrophysics is obvious... The challenge here is to
find observable features that are truly relativistic, related, for example, to
horizons, ergoregions... Indications exist, but – as far as I am aware – no firm
evidence.”

There are many excellent recent reviews on the astrophysical evidence
for black holes (see e.g. [88–90]). It is true, that the evidence points towards
the presence of dark massive objects – stellar-mass objects in binaries, and
supermassive objects in the centres of galaxies – which are associated with
deep gravitational potential wells where Newtonian gravity cannot be used,
but it does not offer a clear diagnostic of general relativity.

Many investigations of test particle orbits in the strong-gravity regions
(r ≤ 10M) have shown basic differences between the motion in the Schwarz-
schild metric and the motion in the central field in Newton’s theory (e.g.
[18,76,91]). For example for 3M < r < 6M unstable circular particle orbits
exist which are energetically unbound, and thus perturbed particles may es-
cape to infinity; at r = 3M circular photon orbits occur and there are no
circular orbits for r < 3M . Particles are trapped by a Schwarzschild black
hole if they reach the region r < 3M .

About ten years ago, the study of the behaviour of particles and gyro-
scopes in the Schwarzschild field revived interest in the “classical” problem of
the definition of gravitational, centrifugal, and other inertial “forces” acting
on particles and gyros moving on the Schwarzschild or on a more general
curved backgrounds, usually axisymmetric and stationary (see e.g. [92,93],
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and many references therein). One would like to have a split of a covariantly
defined quantity (like an acceleration) into non-covariant parts, the physical
meaning of which would increase our intuition of relativistic effects in astro-
physical problems. If, for example, we adopt the view that the “gravitational
force” is velocity-independent, then we find that at the orbits outside the cir-
cular photon orbit (r > 3M), the centrifugal force is as in classical physics,
repulsive, while it becomes attractive inside this orbit, being zero exactly at
the orbit.9

Relativistic effects will, of course, play a role in many astrophysical situ-
ations involving spherical accretion, the structure of accretion disks around
compact stars and black holes, their optical appearance etc. They have be-
come an important part of the arsenal of astrophysicists, and they have en-
tered standard literature (see e.g. [95,96]). Though this whole field of science
lies beyond the scope of this article, I would like to mention three recent issues
which provide us with hope that we may perhaps soon meet the challenge
noted in Jürgen Ehlers’ remarks made in Bad Honnef in 1996.

The first concerns our Galactic centre. Thanks to new observations of stars
in the near infrared band it was possible to detect the transverse motions of
stars (for which the radial velocities are also observed) within 0.1 pc in our
Galactic centre. The stellar velocities up to 2000 km/sec and their dependence
on the radial distance from the centre are consistent with a black hole of mass
2.5 × 106M�. In the opinion of some leading astrophysicists, our Galactic
centre now provides “the most convincing case for a supermassive hole, with
the single exception of NGC 4258” [88]. (In NGC 4258 a disk is observed
whose inner edge is orbiting at 1080 km/sec, implying a black hole – “or
something more exotic” [88] – with a mass of 3.6×107M�.) Perhaps we shall
be able to observe relativistic effects on the proper motions of stars in our
Galactic centre in the not too distant future.

The second issue concerns the fundamental question of whether observa-
tions can bring convincing proof of the existence of black hole event hori-
zons. Very recently some astrophysicists [89] claimed that new observations,
in particular of X-ray binaries, imply such evidence. The idea is that thin
disk accretion cannot explain the spectra of some of X-ray binaries. One has
to use a different accretion model, a so called advection-dominated accretion
flow model (ADAF) in which most of the gravitational energy released in
the infalling gas is carried (advected) with the flow as thermal energy, which
falls on the central object. (In thin disks most of this energy is radiated out
from the disk.) If the central compact object (for example a neutron star)
has a hard surface, the thermal energy stored in the flow is re-radiated after
the flow hits the surface. However, some of the X-ray binaries show such low
luminosities that a very large fraction of the energy in the flow must be ad-
9 Curiously enough, Feynman in his 1962-63 lectures on gravitation [94] writes

that “inside r = 2M [not 3M !]... the ‘centrifugal force’ apparently acts as an
attraction rather than a repulsion”.
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vected through an event horizon into a black hole [89]. Although Rees [88],
for example, considers this evidence “gratifyingly consistent with the high-
mass objects in binaries being black holes”, he believes that it “would still
not convince an intelligent sceptic, who could postulate a different theory
of strong-field gravity or else that the high-mass compact objects were (for
instance) self-gravitating clusters of weakly interacting particles...”.

For a sceptical optimistic relativist, the most challenging observational
issue related to black holes probably is to find astrophysical evidence for a
Kerr metric. We shall come to this point in Sect. 4.3.

The last (but certainly not the least) issue lies more in the future, but
eventually should turn out to be most promising. It is connected with both
the Numerical Relativity Great Challenge Alliance and the “great challenge”
of experimental relativity: to calculate reliable gravitational wave-forms and
to detect them. When gravitational waves from stars captured by a super-
massive black hole, or from a newly forming supermassive black hole, or,
most importantly, from coalescing supermassive holes will be detected and
compared with the predictions of the theory, we should learn significant facts
about black holes [88,97]. Are these so general remarks entirely inappropriate
in the section on the Schwarzschild solution?

One of the most important roles of the Schwarzschild solution in the
development of mathematical relativity and especially of relativistic astro-
physics stems from its simplicity, in particular from its spherical symmetry.
This has enabled us to develop the mathematically beautiful theory of lin-
ear perturbations of the Schwarzschild background and employ it in various
astrophysically realistic situations (see e.g. [75,76,91], and many references
therein). Surprisingly enough, this theory does not only give reliable results
in such problems as the calculation of waves emitted by pulsating neutron
stars, or waves radiated out from stars falling into a supermassive black hole.
Very recently we have learned that one can use perturbation theory of a single
Schwarzschild black hole as a “close approximation” to black hole collisions.
Towards the end of the collision of two black holes, they will not in fact be
two black holes, but will merge into a highly distorted single black hole [98].
When compared with the numerical results on a head-on collision it has been
found that this approximation gives predictions for separations Δ as large as
Δ/M ∼ 7.

3 The Reissner–Nordström Solution

This spherically symmetric solution of the Einstein–Maxwell equations was
derived independently10 by H. Reissner in 1916, H. Weyl in 1917, and G.
10 In the literature one finds the solution to be repeatedly connected only with

the names of Reissner and Nordström, except for the “exact-solutions-book”
[61]: there in four places the solution is called as everywhere else, but in one
place (p. 257) it is referred to as the “Reissner–Weyl solutions”. An enlightening
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Nordström in 1918. It represents a spacetime with no matter sources except
for a radial electric field, the energy of which has to be included on the right-
hand side of the Einstein equations. Since Birkhoff’s theorem, mentioned in
connection with the Schwarzschild solution in Sect. 2.2, can be generalized
to the electrovacuum case, the Reissner–Nordström solution is the unique
spherical electrovacuum solution. Similarly to the Schwarzschild solution, it
thus describes the exterior gravitational and electromagnetic fields of an ar-
bitrary – static, oscillating, collapsing or expanding – spherically symmetric,
charged body of mass M and charge Q. The metric reads

ds2 = −
(

1− 2M
r

+
Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2

+ r2 (
dθ2 + sin2 θ dϕ2) , (9)

the electromagnetic field in these spherical coordinates is described by the
“classical” expressions for the time component of the electromagnetic poten-
tial and the (only non-zero) component of the electromagnetic field tensor:

At = −Q

r
, Ftr = −Frt = −Q

r2 . (10)

A number of authors have discussed spherically symmetric, static charged
dust configurations producing a Reissner–Nordström metric outside, some of
them with a hope to construct a “classical model” of a charged elementary
particle (see [61] for references). The main influence the metric has exerted on
the developments of general relativity, and more recently in supersymmetric
and superstring theories (see Sect. 3.2), is however in its analytically extended
electrovacuum form when it represents charged, spherical black holes.

3.1 Reissner–Nordström Black Holes
and the Question of Cosmic Censorship

The analytic extensions have qualitatively different character in three cases,
depending on the relationship between the mass M and the charge Q. In
the case Q2 > M2 (corresponding, for example, to the field outside an elec-
tron), the complete electrovacuum spacetime is covered by the coordinates
(t, r, θ, ϕ), 0 < r < ∞. There is a naked singularity (visible from infinity) at
r = 0 in which the curvature invariants diverge. If Q2 < M2, the metric (9)

discussion on p. 209 in [61] shows that the solution belongs to a more general
“Weyl’s electrovacuum class” of electrostatic solutions discovered by Weyl (in
1917) which follow from an Ansatz that there is a functional relationship between
the gravitational and electrostatic potentials. As will be noticed also in the case
of cylindrical waves in Sect. 9, if “too many” solutions are given in one paper, the
name of the author is not likely to survive in the name of an important subclass...
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describes a (generic) Reissner–Nordström black hole; it becomes singular at
two radii:

r = r± = M ± (M2 −Q2)
1
2 . (11)

Similarly to the Schwarzschild case, these are only coordinate singularities.
Graves and Brill [99] discovered, however, that the analytic extension and
the causal structure of the Reissner–Nordström spacetime with M2 > Q2 is
fundamentally different from that of the Schwarzschild spacetime. There are
two null hypersurfaces, at r = r+ and r = r−, which are known as the outer
(event) horizon and the inner horizon; the Killing vector ∂/∂t is null at the
horizons, timelike at r > r+ and r < r−, but spacelike at r− < r < r+.
The character of the extended manifold is best seen in the Penrose diagram
in Fig. 5, in which the spacetime is compactified by a suitable conformal
rescaling of the metric (see, e.g. [18,26,30]). As in the compactified Kruskal-
Schwarzschild diagram in Fig. 3, the causal structure is well illustrated be-
cause worldlines of radial light signals are 45-degree lines. There are again
two infinities illustrated - the right and left - in regions I and III. However,
the maximally extended Reissner–Nordström geometry consists of an infinite
chain of asymptotic regions connected by “wormholes” between the real sin-
gularities (with divergent curvature invariants) at r = 0. In Fig. 5, the right
and left (past null) infinities in regions I ′ and III ′ are still seen - the others
are obtained by extending the diagram vertically in both directions.

An important lesson one has learned is that the character of the singu-
larity need not be spacelike as it is in the Schwarzschild case, or with the
big bang singularities in standard cosmological models. Indeed, the singu-
larities in the Reissner–Nordström geometry are timelike: they do not block
the way to the future. By solving the geodesic equation one can show that
there are test particles which start in “our universe” (region I), cross the
outer horizon at r = r+ and the inner horizon at r = r−, avoid the singu-
larity and through a “white hole” (the outer horizon between regions IV ′

and I ′) emerge into “another universe” I ′ with its own asymptotically flat
region. Such a gravitational bounce can occur not only with test particles. The
studies of the gravitational collapse of charged spherical shells ([100] and ref-
erences therein) and of charged dust spheres ([101] and references therein)
have shown that a bounce can take place also in fully dynamical cases.11 The
part of Fig. 5 which is “left” from the worldline of the surface of the sphere
or the shell is “covered” by the interior of the sphere or flat space inside
the shell. As observed in [100], the outcome of the bounce of a shell can be

11 An intuitive explanation [101] of this bounce is that as the sphere (the shell)
contracts, the volume of the exterior region increases, and hence also the total
energy in the electric field, which eventually exceeds the energy in the sphere.
However, the external plus internal energy does not change during collapse (there
are no waves), and so in the neighborhood of a highly contracted charged object,
the gravitational field must have a repulsive character corresponding to a negative
mass-energy.
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Fig. 5. The compactified Reissner–Nordström spacetime representing a non-
extreme black hole consists of an indefinite chain of asymptotic regions (“universes”)
connected by “wormholes” between timelike singularities. The worldline of a shell
collapsing from “universe” I and re-emerging in “universe” I ′ is indicated. The
inner horizon at r = r− is the Cauchy horizon for spacelike hypersurface Σ. It is
unstable and will thus very likely prevent such a process occuring.

different, depending on the value of the shell’s total mass, charge and rest
mass. The shell may crash into the “right” singularity or it may continue to
expand and emerge in region I ′. If the rest mass of the shell is negative the
collapse may even lead to a naked singularity.

Now even if the shell collapses into a black hole, and after a bounce,
emerges in region I ′, a locally naked singularity is present: the timelike sin-
gularity at r = 0, to the “right” from the wordline of the shell. An observer
travelling into the future “between” the shell and the singularity can be sur-
prised by a signal coming from the singularity (see Fig. 5). Penrose’s strong
cosmic censorship conjecture (see e.g. [102]) suggests that this should not
happen. In its physical formulation, as given by Wald (see [19] also for the
precise formulation), it says that all physically reasonable spacetimes are
globally hyperbolic, i.e. apart from a possible initial (big bang-type) singu-
larity, no singularity is visible to any observer. It was just the example of the
Reissner–Nordström solution (and a similar property of the Kerr solution)
which inspired Penrose to formulate the strong cosmic censorship conjec-
ture, in addition to its weak version which only requires that from generic
nonsingular initial data on a Cauchy hypersurface no spacetime singularity
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develops which is visible from infinity. As Penrose [102] puts it, “it seems to
be comparatively unimportant whether the observer himself can escape to
infinity”.

It is evident from Fig. 5 that the Reissner–Nordström spacetime is not
globally hyperbolic, i.e. it does not possess a Cauchy hypersurface Σ, the
initial data on which (for a test field, say) would determine the development
of data in the entire future. If data are given on the spacelike hypersurface
Σ “connecting” left and right infinities of regions III and I, the Cauchy
development will predict what happens only in regions III and I above Σ, and
in region II, i.e. not beyond the null hypersurfaces (inner horizons) r = r−
between region II and regions V in the figure. The inner horizons r = r−
represent the Cauchy horizon for a typical initial hypersurface like Σ. As
noticed above, what is happening at an event in regions V is in general
influenced not only by data on Σ but also by what is happening at the
(locally) naked singularities (which cannot be predicted since the physics at
a singularity cannot be controlled).

Penrose was also the first who predicted that the inner (Cauchy) horizon
is unstable [27]. If this is true, a null singularity, or possibly even a spacelike
singularity may arise during a general collapse, so preventing a violation of the
strong cosmic censorship conjecture. The instability of the Cauchy horizon
can in fact be expected by using first the following simple geometrical-optics
argument.

Introduce the ingoing Eddington–Finkelstein null coordinate v by

v = t + r∗ = t +
∫

f(r)dr,

f = 1− 2M/r + Q2/r2, (12)

which brings the metric (9) into the form as of equation (4) in the Schwarz-
schild case. Consider a freely falling observer who is approaching the inner
horizon given by r = r−, v = ∞. Denoting the observer’s constant spe-
cific energy parameter (see e.g. [18]) by Ẽ = −Uξ, where the Killing vector
ξ = ∂/∂v, observer’s four-velocity U = d/dτ (τ - observer’s proper time),
the geodesic equations imply

ṙ2 + f = Ẽ2, v̇ = f−1[Ẽ − (Ẽ2 − f)
1
2 ], (13)

where a dot denotes d/dτ . Between the horizons, ξ is spacelike and Ẽ can
be negative. Geodesic equations (13) imply dr/dv ∼= 1

2f for an observer with
Ẽ < 0, approaching r = r− from region II. Expanding f near r = r−,
f ∼= f ′(r−)(r − r−) = −2κ(r − r−), where

κ = (M2 −Q2)
1
2 /r2

− (14)

is the surface gravity of the inner horizon (as it follows from definition (8)),
and integrating, we get f near r−. From the second equation in (13) we then
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obtain the “asymptotic formula”

v̇ � constant | Ẽ | eκτ ∼= 1
κΔτ

, v →∞, Δτ → 0, (15)

where Δτ is the amount of proper time the observer needs to reach the inner
(Cauchy) horizon.

Imagine now two nearby events Aout and Bout in the outside world I, for
example the emission of two photons from a given fixed r > r+, which are
connected by the ingoing null geodesics v = constant and v + dv = constant
with events Ain and Bin on the worldline of the observer approaching r−. The
interval of proper time between Aout and Bout is dτout ∼ dv, whereas (15)
implies that the interval of proper time between Ain and Bin, as measured
by the observer approaching r−, is dτin ∼ e−κvdv. Therefore,

dτin

dτout
∼ e−κv, (16)

so that as v → +∞ the events (clocks) in the outside world are measured to
proceed increasingly fast by the inside observer approaching the inner hori-
zon. In the limit, when the observer crosses the Cauchy horizon, he sees the
whole future history (from some event as Aout) of the external universe to
“proceed in one flash”: dτin → 0 with dτout → ∞. An intuitive explanation
is given by the fact that the observers in region I need infinite proper time
to reach v = ∞, whereas inside observers only finite proper time. The in-
falling radiation will thus be unboundedly blue-shifted at the inner horizon
which in general will lead to a divergence of the energy density there. This
infinite blueshift at the inner (Cauchy) horizon makes it generally unstable
to perturbations (“the blue-sheet instability”).

There exists an extensive literature analyzing the exciting questions of
the black hole interiors (see for example [76], the introductory review [103]
in the proceedings of the recent workshop devoted entirely to these issues,
and other contributions in the proceedings which give also many further
references). Some crucial questions are still the subject of much debate. One
of the following two approaches to the problem is usually chosen: (i) a linear
perturbation analysis of the behaviour of fields at the Cauchy horizon, (ii)
the simplified nonlinear, spherically symmetric models of black hole interiors.

In the first approach one considers the evolution of linear perturbations,
representing scalar, electromagnetic, or gravitational fields, on the Reissner–
Nordström background. Since there is a nonvanishing background electric
field, the electromagnetic and gravitational perturbations are coupled.12 It is
12 This leads to various interesting phenomena. For example, the scattering of inci-

dent electromagnetic and gravitational waves by the Reissner–Nordström black
hole allows for the partial conversion of electromagnetic waves into gravitational
waves and vice versa [91]. When studying stationary electromagnetic fields due
to sources located outside the Reissner–Nordström black hole, one discovers that
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a remarkable fact that “wave equations” for certain gauge-invariant combi-
nations of perturbations can be derived from which all perturbations can
eventually be constructed [91,105,106]. In the simplest case of the scalar field
Φ on the Reissner–Nordström background, after resolving the field into spher-
ical harmonics and putting Φ = rΨ , the wave equation has the form [107]

Ψ,tt − Ψ,r∗r∗ + Fl(r∗)Ψ = 0, (17)

where the curvature-induced potential barrier is given by

Fl(r∗) =
(

1− 2M
r

+
Q2

r2

) [
2
r3

(
M − Q2

r2

)
+

l(l + 1)
r2

]
, (18)

where r is considered to be a function of r∗ (cf. (12)). In order to determine
the evolution of the field below the outer horizon in a real gravitational col-
lapse, one first concentrates on the evolution of the field outside a collapsing
body (star). A nonspherically symmetric scalar test field (generated by a non-
spherical distribution of “scalar charge” in the star) serves as a prototype for
(small) asymmetries in the external gravitational and electromagnetic fields,
which are generated by asymmetries in matter and charge distributions inside
the star. Now when a slightly nonspherical star starts to collapse, the per-
turbations become dynamical and propagate as waves. Their evolution can
be determined by solving the wave equation (17). Because of the potential
barrier (18) the waves get backscattered and produce slowly decaying radia-
tive tails, as shown in the classical papers by Price [108,109], and generalized
to the Reissner–Nordström case in [107,110]. The tails decay in the vicinity
of the outer event horizon r+ (i.e. between regions I and II in Fig. 5) as
Ψ ∼ v−2(l+1) for l-pole perturbations.13 The decaying tails provide the initial
data for the “internal problem” – the behaviour of the field near the Cauchy
horizon. Calculations show (see [103] and references therein) that near the
Cauchy horizon the behaviour of the field remains qualitatively the same:
Ψ(u, v→∞) ∼ v−2(l+1) + {slowly varying function of u}, where u = 2r∗ − v
is constant along outgoing radial null geodesics in region II. However, as a
consequence of the “exponentially growing blueshift”, given by formula (15),
the rate of change of the field diverges as the observer approaches the Cauchy
horizon: dΨ/dτ = (∂Ψ/∂xα)Uα � Ψ,v v̇ ∼ v−2l−3eκv. Therefore, the mea-
sured energy density in the field would also diverge, causing an instability of
the Cauchy horizon, which would be expected to create a curvature singular-
ity. More detailed considerations [103] show that the singularity, at least for

closed magnetic field lines not linking any current source may exist, since gravita-
tional perturbations constitute, via the background Maxwell tensor, an effective
source [104].

13 This result is true for a general charged Reissner–Nordström black hole with
Q2 < M2. In the extremal case, Q2 = M2, the field decays only as Ψ ∼ v−(l+2)

[107].
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large |u|, is null and weak (the metric is well-defined, only the Riemann ten-
sor is singular). Any definitive picture of the Cauchy horizon instability can
come however only from a fully nonlinear analysis which takes into account
the backreaction of spacetime geometry to the growing perturbations.

The second approach to the study of the Cauchy horizon instabilities em-
ploys a simplified, spherically symmetric model which treats the nonlineari-
ties exactly [111]. The ingoing radiation is modelled by a stream of ingoing
charged null dust [112] which is infinitely blueshifted at the inner horizon.
There is, however, also an outgoing stream of charged null dust considered
to propagate into region II towards the inner horizon. The outgoing flux may
represent radiation coming from the stellar surface below the outer horizon,
as well as a portion of the ingoing radiation which is backscattered in region
II, and irradiates thus the inner horizon. A detailed analysis based on exact
spherically symmetric solutions revealed a remarkable effect: an effective in-
ternal gravitational-mass parameter of the hole unboundedly increases at the
inner (Cauchy) horizon (though the external mass of the hole remains finite).
This “mass inflation phenomenon” causes the divergence of some curvature
scalars at the Cauchy horizon [111]. In reality, the classical laws of general
relativity will break down when the curvature reaches Planckian values.

It is outside the scope of this review to discuss further the fascinating
issues of black hole interiors. They involve deep questions of classical rela-
tivity, of quantum field theory on curved background (as, for example, in
discussions of electromagnetic pair production and vacuum polarization ef-
fects inside black holes), and they lead us eventually to quantum gravity. We
refer again especially to [76] and [103] for more information. Let us only add
three further remarks. We mentioned above the work on the inner structure
of Reissner–Nordström black holes because this is the most explored (though
not closed) area. However, Kerr black holes (Sect. 4) possess also inner hori-
zons and there are many papers concerned with the instabilities of the Kerr
Cauchy horizons (see [76,103] for references). Secondly, at the beginning of
1990s, it was shown that the inner horizons of the Reissner–Nordström-de
Sitter and Kerr–de Sitter black holes are classically stable in the case when
the surface gravity at the inner horizons is smaller than the surface gravity
at the cosmological horizon ([103] and references therein, in particular, the
review [113]). Penrose [114] even suggested that “it may well be that cosmic
censorship requires a zero (or at least a nonpositive) cosmological constant”.
Very recently, however, three experts in the field [115] have claimed that out-
going modes near to the black hole (outer) event horizon lead to instability
for all values of the parameters of Reissner–Nordström-de Sitter black holes.
Let me borrow again a statement from Penrose [114]: “My own feelings are
left somewhat uncertain by all these considerations”.

Finally, a new contribution [116] to the old problem of testing the weak
cosmic censorship by employing a Reissner–Nordström black hole indicates
that one can overcharge a near extreme (Q2 → M2) black hole by throwing in



The Role of Exact Solutions 39

a charged particle appropriately. However, the backreaction effects remain to
be explored more thoroughly. The question of cosmic censorship thus remains
as interesting as ever.

3.2 On Extreme Black Holes, d-Dimensional Black Holes,
String Theory and “All That”

In the previous section we considered generic Reissner–Nordström black holes
with M2 > Q2. They have outer and inner horizons given by (11), with
nonvanishing surface gravities (cf. (14) for the inner horizon). For M2 =
Q2 the two horizons coincide at r+ = r− = M . Defining the ingoing null
coordinate v as in (12), we obtain the ingoing extension of the Reissner–
Nordström metric (9) in the form

ds2 = −
(

1− M

r

)2

dr2 + 2dvdr + r2(dθ2 + sin2 θdϕ2). (19)

This is the metric of extreme Reissner–Nordström black holes. Frequently,
these holes are called “degenerate”. At the horizon r = M , the Killing vector
field k = ∂/∂v obeys the equation (kαkα),β = 0, so that regarding the general
relation (8), the surface gravity κ = 0, i.e. the Killing horizon is degenerate.
Using (k2),β = 0 and the Killing equation, we easily deduce that the horizon
null generators with tangent kα = dxα/dv satisfy the geodesic equation with
affine parameter v. The generators have infinite affine length to the past given
by v → −∞ (in contrast to the generators of a bifurcate Killing horizon – cf.
Sect. 2.4). This part of the extreme Reissner–Nordström spacetime, given by
r = M, v → −∞, is called an “internal infinity”. That there is no “wormhole”
joining two asymptotically flat regions and containing a minimal surface 2-
sphere like in the non-extreme case can also be seen from the metric in the
original Schwarzschild-type coordinates. Considering an embedding diagram
t = constant, θ = π/2 in flat Euclidean space one finds that an infinite “tube”,
or an asymptotically cylindrical region on each t = constant hypersurface
develops. The boundary of the cylindrical region is the internal infinity. It is
a compact 2-dimensional spacelike surface. The hypersurfaces t = constant
do not intersect the horizon but only approach such an intersection at the
internal infinity. (See [79] for the conformal diagram and a detailed discussion,
including analysis of the electrovacuum Robinson–Bertotti universe as the
asymptotic limit of the extreme Reissner–Nordström geometry at the internal
infinity.)

There has been much interest in the extreme Reissner–Nordström black
holes within standard Einstein–Maxwell theory. They admit surprisingly sim-
ple solutions of the perturbation equations [117]. Some of them appear to be
stable with respect to both classical and quantum processes, and there are
attempts to interpret them as solitons [118]. Also, they admit supersymmetry
[119].
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The quotation marks in the title of this section play a double role: the
last two words are just “quoting” from the end of the title of a general re-
view on string theory and supersymmetry prepared for the special March
1999 issue of the Reviews of Modern Physics in honor of the centenary of
the American Physical Society by Schwarz and Seiberg [120], but they also
should “self-ironically” indicate my ignorance in these issues. In addition,
unified theories of the type of string theory appear to be somewhat outside
the direct interest of Jürgen Ehlers, who has always emphasized the depth
and economy of general relativity because it is a “background-independent”
theory: string theories still suffer from the lack of a background-independent
formulation. Nevertheless, they are beautiful, consistent, and very challeng-
ing constructions, representing one of the most active areas of theoretical
physics. Recently, string theory provided an explanation of the Bekenstein-
Hawking prediction of the entropy of extreme and nearly extreme black holes.
From the point of view of this review we should emphasize that many of the
techniques that have been used to obtain exact solutions – mostly exact black
hole solutions – in generalized theories like string theory were motivated by
classical general relativity. There are also results in classical general relativity
which are finding interesting generalizations to string theories, as we shall see
with one example below.

Before making a few amateurish comments on new results concerning
extreme black holes in string theories, let us point out that in many pa-
pers from the last 20 years, black hole solutions were studied in spacetimes
with the number of dimensions either lower or higher than four. The lower-
dimensional cases are usually analyzed as “toy models” for understanding the
complicated problems of quantum gravity. The higher-dimensional models
are motivated by efforts to find a theory which unifies gravity with the other
forces. The most surprising and popular (2+1)-dimensional black hole is the
BTZ (Bañados-Teitelboim-Zanelli) black hole in the Einstein theory with a
negative cosmological constant. Locally it is isometric to anti de Sitter space
but its topology is different. In [121] the properties of (2+1)-dimensional
black holes are reviewed. In (1+1)-dimensions one obtains black holes only if
one includes at least a simple dilaton scalar field; the motivation for how to
do this comes from string theory. In higher dimensions one can find general-
izations of all basic black hole solutions in four dimensions [122]. Interesting
observations concerning higher-dimensional black holes have been given a
few years ago [123]. Perhaps one does not need to quantize gravity in order
to remove the singularities of classical relativity. It may well be true that
some new classical physics intervenes below Planckian energies. In [123] it is
demonstrated that certain singularities of the four-dimensional extreme dila-
ton black holes can be resolved by passing to a higher-dimensional theory of
gravity in which usual spacetime is obtained only below some compactifica-
tion scale. A useful, brief pedagogical introduction to black holes in unified
theories is contained in [76].
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One of the most admirable recent results of string theory, which undoubt-
edly converted some relativists and stimulated many string theorists, has
been the derivation of the exact value of the entropy of extreme and nearly
extreme black holes. I shall just paraphrase a few statements from the March
1999 review for the centenary of the American Physical Society by Horowitz
and Teukolsky [124]. There are very special states in string theory called
BPS (Bogomol’ny–Prasad–Sommerfield) states which saturate an equality
M ≥ c|Q|, with M being the mass, Q the charge, and c is a fixed constant.
The mass of these special states does not get any quantum corrections. The
strength of the interactions in string theory is determined by a coupling con-
stant g. One can count BPS states at large Q and small g. By increasing g one
increases gravity, and then all of these states become black holes. (The BPS
states are supersymmetric and one can thus follow the states from weak to
strong coupling.) But they all become identical extreme Reissner–Nordström
black holes, because there is only one black hole for given M = |Q|. When
one counts the number N of BPS states in which an extreme hole can exist,
and compares this with the entropy Sbh = 1

4A of the hole as obtained in
black hole thermodynamics [82,125], where A is the area of the event horizon
(A = 4πM2 for the extreme Reissner–Nordström black hole), one finds ex-
actly the “classical” result: Sbh = logN !. The entropy of the classical black
hole configuration is given in terms of the number of quantum microstates
associated with that configuration, by the basic formula of statistical physics.
For more detailed recent reviews, see [126,127], and references therein. Re-
markably, the results for the black hole entropy have been obtained also
within the canonical quantization of gravity [128]. A comprehensive review
[129] of black holes and solitons in string theory appeared very recently.

Allow me to finish this “all that” section with a personal remark. In 1980
L. Dvořák and I found that in the Einstein–Maxwell theory, external mag-
netic flux lines are expelled from the black hole horizon as the hole becomes
an extreme Reissner–Nordström black hole [104]. Hence, extreme black holes
exhibit some sort of “Meissner effect” known from superconductivity. Last
year it was demonstrated by Chamblin, Emparan and Gibbons [130] that this
effect occurs also for black hole solutions in string theory and Kaluza–Klein
theory. Other extremal solitonic objects in string theory (like p-branes) can
also have superconducting properties. Within the Einstein–Maxwell theory
this effect was first studied to linear order in magnetic field – we analyzed
Reissner–Nordström black holes in the presence of magnetic fields induced
by current loops. However, we also used an exact solution due to Ernst [131],
describing a charged black hole in a background magnetic field, which asymp-
totically goes over to a Melvin universe, and found the same effect (see also
[132] for the case of the magnetized Kerr–Newman black hole). In [130] the
techniques of finding exact solutions of Einstein’s field equations are employed
within string theory and Kaluza–Klein theory to demonstrate the “Meissner
effect” in these theories.
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4 The Kerr Metric

The discovery of the Kerr metric in 1963 and the proof of its unique role in
the physics of black holes have made an immense impact on the development
of general relativity and astrophysics. This can hardly be more eloquently
demonstrated than by an emotional text from Chandrasekhar [60]: “In my
entire scientific life, extending over forty-five years, the most shattering expe-
rience has been the realization that an exact solution of Einstein’s equations
of general relativity, discovered by the New Zealand mathematician Roy Kerr,
provides the absolutely exact representation of untold numbers of massive
black holes that populate the Universe...”

In Boyer–Lindquist coordinates the Kerr metric [133] looks as follows (see
e.g. [18,30]):

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 2

2aMr sin2 θ

Σ
dt dϕ +

+
Σ

Δ
dr2 + Σdθ2 +

A
Σ

sin2 θ dϕ2, (20)

where

Σ = r2 + a2 cos2 θ, Δ = r2 − 2Mr + a2,

A = Σ(r2 + a2) + 2Mra2 sin2 θ, (21)

where M and a are constants.

4.1 Basic Features

The Boyer–Lindquist coordinates follow naturally from the symmetries of the
Kerr spacetime. The scalars t and ϕ can be fixed uniquely (up to additive
constants) as parameters varying along the integral curves of (unique) sta-
tionary and axial Killing vector fields k and m; and the scalars r and θ can
be fixed (up to constant factors) as parameters related as closely as possi-
ble to the (geometrically preferred) principal null congruences, which in the
Kerr spacetime exist (see e.g. [18,30]), and their projections on to the two-
dimensional spacelike submanifolds orthogonal to both k and m (see [134]
for details). The Boyer–Lindquist coordinates represent the natural general-
ization of Schwarzschild coordinates. With a = 0 the metric (20) reduces to
the Schwarzschild metric.

By examining the Kerr metric in the asymptotic region r →∞, one finds
that M represents the mass and J = Ma the angular momentum pointing
in the z-direction, so that a is the angular momentum per unit mass. One
can arrive at these results by considering, for example, the weak field and
slow motion limit, M/r  1 and a/r  1. The Kerr metric (20) can then be
written in the form
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ds2 = −
(

1− 2M
r

)
dt2 +

(
1 +

2M
r

)
dr2

+r2 (
dθ2 + sin2 θ dϕ2) − 4aM

r
sin2 θ dϕ dt, (22)

which is the weak field metric generated by a central body with mass M
and angular momentum J = Ma. A general, rigorous way of interpreting the
parameters entering the Kerr metric starts from the definition of multipole
moments of asymptotically flat, stationary vacuum spacetimes. This is given
in physical space by Thorne [135], using his “asymptotically Cartesian and
mass centered” coordinate systems, and by Hansen [136], who, generalizing
the definition of Geroch for the static case, gives the coordinate independent
definition based on the conformal completion of the 3-dimensional manifold
of trajectories of a timelike Killing vector k. The exact Kerr solution has
served as a convenient “test-bed” for such definitions.14 The mass monopole
moment – the mass – is M , the mass dipole moment vanishes in the “mass-
centered” coordinates, the quadrupole moment components are 1

3Ma2 and
− 2

3Ma2. The current dipole moment – the angular momentum – is nonvan-
ishing only along the axis of symmetry and is equal to J = Ma, while the
current quadrupole moment vanishes. All other nonvanishing l-pole moments
are proportional to Mal [135,136]. Because these specific values of the mul-
tipole moments depend on only two parameters, the Kerr solution clearly
cannot represent the gravitational field outside a general rotating body. In
Sect. 6.2 we indicate how the Kerr metric with general values of M and a
can be produced by special disk sources. The fundamental significance of the
Kerr spacetime, however, lies in its role as the only vacuum rotating black
hole solution.

Many texts give excellent and thorough discussions of properties of Kerr
black holes from various viewpoints [18,19,26,30,70,75,76,79,91,95,138]. The
Kerr metric entered the new edition of “Landau and Lifshitz” [139]. A few
years ago, a book devoted entirely to the Kerr geometry appeared [140]. Here
we can list only a few basic points.

As with the Reissner–Nordström spacetime, one can make the maximal
analytic extension of the Kerr geometry. This, in fact, has much in common
with the Reissner–Nordström case. Loosely speaking, the “repulsive” char-
acters of both charge and rotation have somewhat similar manifestations.
When a2 < M2, the metric (20) has coordinate singularities at Δ = 0, i.e. at
(cf. (21))

r = r± = M ± (M2 − a2)
1
2 . (23)

14 For the most complete, rigorous treatment of the asymptotic structure of station-
ary spacetimes characterized uniquely by multipole moments defined at spatial
infinity, see the work by Beig and Simon [137], the article by Beig and Schmidt
in this volume, and references therein.
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r = r+

r = r-
ergosphere

ring singularity

outer event horizon

A

B

C

inner event horizon

Fig. 6. A schematic picture of a Kerr black hole with two horizons, ergosphere, and
the ring singularity; local light wavefronts are also indicated. Particle A, entering
the ergosphere from infinity, can split inside the ergosphere into particles B and C
in such a manner that C arrives at infinity with a higher energy than particle A
came in.

The intrinsic three-dimensional geometry at r = r± reveals that these are
null hypersurfaces – the (outer) event horizon and the inner horizon (Fig.
6). As with the Reissner–Nordström metric, the inner horizon – the Cauchy
hypersurface – is unstable (see a more detailed discussion in Sect. 3.2 and
references there). And as in the Penrose diagram in Fig. 5, one finds infinitely
many asymptotically flat regions in the analogous Penrose diagram for the
Kerr black hole spacetime.

A crucial difference between the Reissner–Nordström and Kerr geome-
try is the existence of the ergosphere (or, more precisely, ergoregion) in the
Kerr case. This is caused by the dragging of inertial frames due to a non-
vanishing angular momentum. The timelike Killing vector k, given in the
Boyer–Lindquist coordinates by ∂/∂t, becomes null “sooner”, at r = r0, than
at the event horizon, r0 > r+ at θ �= 0, π, as a consequence of this dragging:

kαkα = −gtt = 1− 2Mr/Σ = 0,

r = r0 = M + (M2 − a2 cos2 θ)
1
2 . (24)

This is the location of the ergosurface, the ergoregion being between this sur-
face and the (outer) horizon. In the ergosphere, schematically illustrated in
Fig. 6, the “rotating geometry” drags the particles and light (with wavefronts
indicated in the figure) so strongly that all physical observers must corotate
with the hole, and so rotate with respect to distant observers – “fixed stars” –
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at rest in the Boyer–Lindquist coordinates.15 Static observers, whose world-
lines (r, θ, ϕ) = constant would have k as tangent vectors, cannot exist since
k is spacelike in the ergosphere. Indeed, a non-spacelike worldline with r, θ
fixed must satisfy the condition

gttdt
2 + gϕϕdϕ2 + 2gϕtdϕdt ≤ 0, (25)

in which gtt = −kαkα, gϕϕ = mαmα, gϕt = kαmα are invariants. In the
ergosphere, the metric (20), (21) yields gtt > 0, gϕϕ > 0, gϕt < 0, so that
dϕ/dt > 0 – an observer moving along a non-spacelike worldline must corotate
with the hole. The effect of dragging on the forms of photon escape cones
in a general Kerr field (without restriction a2 < M2) has been numerically
studied and carefully illustrated in a number of figures only recently [142].

In order to “compensate” the dragging, the congruence of “locally nonro-
tating frames” (LNRFs), or “zero-angular momentum observers” (ZAMOS),
has been introduced. These frames have also commonly been used outside
relativistic, rapidly rotating stars constructed numerically, but the Kerr met-
ric played an inspiring role (as, after all, in several other issues, such as in
understanding the ergoregions, etc.). The four-velocity of these (not freely
falling!) observers, given in Boyer–Lindquist coordinates by

eα
(t) =

[
(A/ΣΔ)

1
2 , 0, 0, 2aMr/(AΣΔ)

1
2

]
, (26)

is orthogonal to the hypersurfaces t = constant. The particles falling from
rest at infinity with zero total angular momentum fall exactly in the radial
direction in the locally nonrotating frames with an orthogonal triad tied to
the r, θ, ϕ coordinate directions (see [143] for the study of the shell of such
particles falling on to a Kerr black hole).

Now going down from the ergosphere to the outer horizon, we find that
both Killing vectors k and m are tangent to the horizon, and are spacelike
there (with k “rotating” with respect to infinity). The null geodesic gen-
erators of the horizon are tangent to the null vectors l = k + Ωm, where
Ω = a/2Mr+ = constant is called the angular velocity of the hole. Ω is con-
stant over the horizon so that the horizon rotates rigidly. Since l is a Killing
vector, the horizon is a Killing horizon (cf. Sect. 2.4).

Another notable difference from the Reissner–Nordström metric is the
character of the singularity at Σ = 0, i.e. at r = 0, θ = π/2. It is timelike,
as in the Reissner–Nordström case, but it is a ring singularity (see Fig. 6).
In the maximal analytic extension of the Kerr metric one can go through
the ring to negative values of the coordinate r and discover closed timelike
15 It is instructive to analyze the somewhat “inverse problem” of gravitational col-

lapse of a slowly rotating dust shell which produces the Kerr metric, linearized
in a/M , outside (cf. Eq.(22)), and has flat space inside. Fixed distant stars seen
from the centre of such shell appear to rotate due to the dragging of inertial
frames, as was discussed in detail recently [141].
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lines since gϕϕ < 0 there. If the Kerr parameters are such that a2 > M2, the
Kerr metric does not represent a black hole. It describes the gravitational
field with a naked ring singularity. The Kerr ring singularity has a repulsive
character near the rotation axis. It gives particles outward accelerations and
collimates them along the rotation axis [144], which might be relevant in
the context of the formation and precollimation of cosmic jets. However, the
cosmic censorship conjecture is a very plausible, though difficult “to prove”
hypothesis, and Kerr naked singularities are unlikely to form in nature. How-
ever, the Kerr geometry with a2 > M2, with a region containing the ring
singularity “cut out”, can be produced by thin disks; though if they should
be composed of physical matter, they cannot be very relativistic (see Sect.
6.2 and references therein).

If a2 = M2, the Kerr solution represents an extreme Kerr black hole, as is
the analogous Reissner–Nordström case with Q2 = M2. The inner and outer
horizons then coincide at r = M . The horizon is degenerate with infinite affine
length. Almost extreme Kerr black holes probably play the most important
role in astrophysics (see below). In realistic astrophysical situations accreting
matter will very likely have a sufficient amount of angular momentum to turn
a Kerr hole to an almost extreme state.

There exists a charged, electrovacuum generalization of the Kerr fam-
ily found by Newman et al. [145]. The Kerr–Newman metric in the Boyer–
Lindquist coordinates can be obtained from the Kerr metric (20) if all of
the terms 2Mr explicitly appearing in (20), (21) are replaced by 2Mr −Q2,
with Q being the charge. The metric describes charged, rotating black holes
if M2 > a2 + Q2, with two horizons located at r± = M ± (M2 − a2 −Q2)

1
2 .

These become extreme when M2 = a2 + Q2, and with M2 < a2 + Q2 one
obtains naked (ring) singularities. The analytic extension, the presence of
ergoregions and the structure of the singularity is similar to the Kerr case.

In addition to the gravitational field, there exists a stationary electro-
magnetic field which is completely determined by the charge Q and rotation
parameter a. The vector potential of this field is given by the 1-form

Aαdxα = −(Qr/Σ)(dt− a sin2 θ dϕ), (27)

so that if a �= 0 the electric field is supplemented by a magnetic field. At large
distances (r → ∞) the field corresponds to a monopole electric field with
charge Q and a dipole magnetic field with magnetic moment μ = Qa. Since
the gyromagnetic ratio of a charged system with angular momentum J is
defined by γ = μ/J , one finds the charged-rotating-black hole gyromagnetic
ratio to satisfy the relation γ = Q/M , i.e. it is twice as large as that of
classical matter, and the same as that of an electron. By examining a black
hole with a loop of rotating charged matter around it, the radius of the loop
changing from large values to the size of the horizon, it is possible to gain
some understanding of this result [146].
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4.2 The Physics and Astrophysics Around Rotating Black Holes

In the introduction to their new 770 page monograph on black hole physics,
Frolov and Novikov [76] write: “... there are a lot of questions connected
with black hole physics and its applications. It is now virtually impossible to
write a book where all these problems and questions are discussed in detail.
Every month new issues of Physical Review D, Astrophysical Journal, and
other physical and astrophysical journals add scores of new publications on
the subject of black holes...” Although Frolov and Novikov have also black
hole-like solutions in superstring and other theories on their minds, we would
not probably be much in error, in particular in the context of astrophysics,
if we would claim the same just about Kerr black holes. Hence, first of all,
we must refer to the same literature as in the previous Sect. 4.1. A few more
references will be given below.

A remarkable fact which stands at the roots of these developments is that
the wave equation is separable, and the geodesic equations are integrable in
the Kerr geometry. Carter [79], who explicitly demonstrated the separability
of the Hamilton-Jacobi equation governing the geodesic motion, has empha-
sized that one can in fact derive the Kerr metric as the simplest nonstatic
generalization of the Schwarzschild solution, by requiring the separability of
the covariant Klein-Gordon wave equation.16

A thorough and comprehensive analysis of the behaviour of freely falling
particles in the Kerr field would produce material for a book. We refer to e.g.
[18,76,91,134,138,144,147] for fairly detailed accounts and a number of further
references. From the point of view of astrophysical applications the following
items appear to be most essential: in contrast to the Schwarzschild case,
where the stable circular orbits exist only up to r = 3r+ = 6M , in the field of
rotating black holes, the stable direct (i.e. with a positive angular momentum)
circular orbits in the equatorial plane can reach regions of “deeper potential
well”. With an extreme Kerr black hole the last stable direct circular orbit
occurs at r = r+ = M . (See [147] for a clear discussion of the positions of the
innermost stable, innermost bound, and photon orbits as the hole becomes
extreme and a long cylindrical throat at the horizon develops.) A “spin-orbit-
coupling” effect increases the binding energy of the direct orbits and decreases
the binding energy of the retrograde (with a negative angular momentum)
orbits relative to the Schwarzschild values. The binding energy of the last
stable direct circular orbit is ΔE = 0.0572μ (μ is the particle’s proper mass)
in the Schwarzschild case, whereas ΔE = 0.4235μ for an extreme Kerr hole.
A particle slowly spiralling inward due the emission of gravitational waves
16 Although this is still not a “constructive, analytic derivation of the Kerr metric

which would fit its physical meaning”, as required by Landau and Lifshitz [139],
it is certainly more intuitive than the original derivation by Kerr. On the other
hand, despite various hints like the existence of the Killing tensor field (in addition
to the Killing vectors) in the Kerr geometry (see e.g. [134]), it does not seem to
be clear why the Kerr geometry makes it possible to separate these equations.



48 Jǐŕı Bičák

would radiate the total energy equal to this binding energy; hence much more
– 42% of its rest energy – in the Kerr case. The second significant effect is
the dragging of the particles moving on orbits outside of the equatorial plane.
The dragging17 will make the orbit of a star around a supermassive black hole
to precess with angular velocity ∼ 2J/r3. The star may go through a disk
around the hole, subsequently crossing it at different places [150]. One can
also show that as a result of the joint action of the gravomagnetic effect and
the viscous forces in an accretion disk, the disk tends to be oriented in the
equatorial plane of the central rotating black hole (the “Bardeen–Petterson
effect”).

The above examples demonstrate specific effects in the Kerr background
which very likely play a significant role in astrophysics (see also Sect. 4.3
below). The best known process in the field of a rotating black hole is probably
astrophysically unimportant, but is of principal significance in the black hole
physics. This is the Penrose process for extracting energy from rotating black
holes. It is illustrated schematically in Fig. 6: particle A comes from infinity
into the ergosphere, splits into two particles, B and C. Whereas C is ejected
back to infinity, B falls inside the black hole. The process can be arranged
in such a way that particle C comes back to infinity with higher energy than
with which particle A was coming in. The gain in the energy is caused by the
decrease of rotational energy of the hole. Such process is possible because the
Killing vector k becomes spacelike in the ergosphere, so that the (conserved)
energy of particle B “as measured at infinity” (see e.g. [18]), EB = −kαpα

B ,
can be negative. Unfortunately, the “explosion” of particle B requires such a
big internal energy that the process is not realistic astrophysically.

More general considerations of the interaction of black holes with matter
outside have led to the formulation of the four laws of black hole thermody-
namics [19,76,82,125]. These issues, in particular after the discovery of the
Hawking effect that black holes emit particles thermally with temperature
T = κ�/2πkc (κ-surface gravity, k-Boltzmann’s constant), have been an in-
spiration in various areas of theoretical physics, going from general relativity
and statistical physics, to quantum gravity and string theory (see [125,126]
and some remarks and references in Sect. 3.2). The Kerr solution played
indeed the most crucial role in these developments. I recall how during my
visits to Moscow in the middle of the 1970s Zel’dovich and his colleagues were
somewhat regretfully admitting that they were on the edge of discovering the
Hawking effect. They realized that an analogue of the Penrose process occurs
with the waves (in so called superradiant scattering) which get amplified if
their energy per unit angular momentum is smaller than the angular velocity
17 Relativists often consider the effects produced by moving mass currents as “the

dragging of inertial frames”, but the concept of the gravomagnetic field, or gravo-
magnetism has some advantages, as has been stressed recently [148]. The gravo-
magnetic viewpoint, however, has also been used in many works in the past –
see, e.g. [71,75], and in particular [149] and references therein.
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Ω of the horizon. Zel’dovich then suggested that there should be spontaneous
emission of particles in the corresponding modes but did not study quantum
fields on a nonrotating background (cf. an account of these developments,
including the visit of Hawking to Moscow in 1973, by Israel [70]).

Returning back to Earth or, rather, up to heavens, it is not so well known
that an astrophysically more realistic example of the Penrose process exists:
this is the Blandford–Znajek mechanism – see [75,88,151] – in which a mag-
netic field threading a rotating hole (the field being maintained by external
currents in an accretion disk, for example) can extract the hole’s rotational
energy and convert it into a Poynting flux and electron-positron pairs. A
Kerr black hole with angular momentum parallel to an external magnetic
field acts (by “unipolar induction”) like a rotating conductor in an external
field. There will be an induced electric field and a potential difference be-
tween the pole and the equator. If these are connected, an electric current
will flow and power will be dissipated. In fact, this appears to be until now
the most plausible process to explain gigantic relativistic jets emanating from
the centres of some of the most active galaxies. The BZ-mechanism has its
problems: extremely rotating black holes expel magnetic flux [75,152] – there
probably exists a value of the angular momentum J0 < Jmax for which the
power extracted will be greatest. It is not clear whether the process can be ef-
ficiently maintained [153]; and perhaps more importantly, new astrophysical
estimates of seed magnetic fields seem to be too low to make the mechanism
efficient [154]. The BZ-mechanism will probably attract more attention in
the coming years, in particular in view of the recent discovery of two “mi-
croquasars” in our own Galaxy, which generate double radio structures and
apparent superluminal jets similar to extragalactic strong radio sources [155].

A remarkable achievement of pure mathematical physics, with a great
impact on astrophysics, has not only been the discovery of the Kerr solution
itself but also the development of the theory of Kerr metric perturbations
[75,76,91,156]. By employing the Newman–Penrose null tetrad formalism,
invented and extensively used in mathematical relativity, in particular in
gravitational radiation theory, it has been possible to separate completely
all perturbation equations for non-zero spin fields. In particular, a single
“master equation” – called the Teukolsky equation – governs scalar, electro-
magnetic and gravitational perturbations of a Kerr black hole.18 If no sources
are present on the right-hand side, the equation looks as follows:[

(r2 + a2)2

Δ
− a2 sin2 θ

]
∂2ψ

∂t2
+

4Mar

Δ

∂2ψ

∂t∂φ
+

[
a2

Δ
− 1

sin2 θ

]
∂2ψ

∂φ2

−Δ−s ∂
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(
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)
− 1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
−2s

[
a(r −M)

Δ
+

i cos θ
sin2 θ

]
∂ψ

∂φ

18 In the case of a Kerr–Newman black hole, the electromagnetic and gravitational
perturbations necessarily couple. Until now, in contrast to the spherical Reissner–
Nordström case, a way of how to decouple them has not been discovered.
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−2s
[
M(r2 − a2)

Δ
− r − ia cos θ

]
∂ψ

∂t
+ (s2 cot2 θ − s)ψ = 0. (28)

The coordinates are the Boyer–Lindquist coordinates used in (20), Δ is de-
fined in (21), and s is the spin weight of the perturbing field; s = 0,±1,±2.
The variables in the Teukolsky equation can be separated by decomposing ψ
according to

sψlm = (1/
√

2π)sRlm(r, ω)sSlm(θ)eimϕe−iωt, (29)

where sSlm are so called spin weighted spheroidal harmonics. By solving the
radial Teukolsky equation for sRlm with appropriate boundary conditions one
can find answers to a number of (astro)physical problems of interest like the
structure of stationary electromagnetic or gravitational fields due to external
sources around a Kerr black hole (e.g. [75,157]), the emission of gravitational
waves from particles plunging into the hole (e.g. [76,97,158]), or the scattering
of the waves from a rotating black hole (e.g. [76,156] and references therein).
At present, the Teukolsky equation is being used to study the formation of a
rotating black hole from a head-on collision of two holes of equal mass and
spin, initially with small separation, to find the wave forms of gravitational
radiation produced in this process [159]. The first studies of second-order
perturbations of a Kerr black hole are also appearing [160].

To find all gravitational (metric) perturbations by solving the complete
system of equations in the Newman–Penrose formalism is in general a formi-
dable task. As Chandrasekhar’s “last observation” at the end of his chapter on
gravitational perturbations of the Kerr black hole reads [91]: “The treatment
of the perturbations of the Kerr spacetime in this chapter has been prolixious
in its complexity. Perhaps, at a later time, the complexity will be unravelled
by deeper insights. But mean time, the analysis has led us into a realm of
the rococo: splendorous, joyful, and immensely ornate.”

4.3 Astrophysical Evidence for a Kerr Metric

Very recently new observations seem to have opened up real possibilities of
testing gravity in the strong-field regime. In particular, it appears feasible
to distinguish the Kerr metric from the Schwarzschild, i.e. to measure a/M .
Our following remarks on these developments are based on the review by M.
Rees [88], and in particular, on the very recent survey by A. Fabian [161],
an authority on diagnosing relativistic rotation from the character of the
emission lines of accretion disks around black holes.

The interest here is not in optical lines since the optical band comes from
a volume much larger than the hole. However, the X-rays are produced in
the innermost parts of an accretion flow, and should thus display substantial
gravitational redshifts as well as Doppler shifts. This only became possible
to observe quite recently, when the ASCA X-ray satellite started to operate,
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and the energy resolution and sensitivity became sufficient to analyze line
shapes.

Typically the profile of a line emitted by a disk from gas orbiting around
a compact object has a double-horned shape. The disk can be imagined to
be composed of thin annuli of orbiting matter – the total line is then the
sum of contributions from each annulus. If the disk is not perpendicular to
our line of sight its approaching sides will – due to classical Doppler shifts –
produce blue peaks, receding sides red peaks. The broadest parts of the total
line come from the innermost annuli because the motion there is fastest. In
addition, there are relativistic effects: they imply that the emission is beamed
in the direction of motion, transverse Doppler shifted, and gravitationally
redshifted. As a result, the total line is broad and skewed in a characteristic
manner. Such lines are seen in the X-ray spectra of most Seyfert 1 galaxies.
In the Seyfert galaxy MCG-6-30-15 the fluorescent iron line was observed to
be (red)shifted further to lower energies.19

Fig. 7. The broad iron line from MCG-6-30-15. The best-fitting, maximally spin-
ning Kerr black hole model is shown (from Iwasawa, K. et al. (1996), Mon. Not.
Roy. Astron. Soc. 282, 1038).

This suggests that the emission took place below 3Rs = 6M , i.e. below the
innermost stable orbit for a Schwarzschild black hole. In 1996, the line shape
was well fitted by the assumption that the line is produced in a close orbit
19 In Seyfert 1 galaxies hard flares occur which irradiate the accretion disk, and

produce a reflection component of continuum peaking at ∼ 30 keV and the fluo-
rescent iron line at about 6.5 keV.
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around maximally rotating (extreme) Kerr black hole. In 1997, the param-
eter a/M was quantified as exceeding 0.95. Hence, it has been “tentatively
concluded that the line was the first spectroscopic evidence for a Kerr hole”
[161].

There are alternative models for a broad skew iron line, including Comp-
tonization by cold electrons, or the emission from irradiated matter falling
from the inner edge of the disk around a nonrotating Schwarzschild black hole.
It appears, however, that the data speak against these possibilities [161]. In
any case, with future X-ray detectors, which will yield count rates orders
of magnitude higher than ASCA, the line shapes should reveal in a much
greater detail specific features of the Kerr metric.

In addition, other possibilities to determine a/M exist. These include:
(i) Observations of stars in relativistic orbits going through a disk around a
supermassive rotating black hole [88,150].
(ii) Characteristic frequencies of the vibrational modes in disks or tori around
rotating black holes [88,162].
(iii) The precession of a disk which is tilted with respect to the hole’s spin
axis. This precession arises because of frame dragging and produces a periodic
modulation of the X-ray luminosity.
(iv) Astrophysically most important would be a discovery showing that the
properties of cosmic jets depend on the value of a/M . This could indicate
that the Blandford–Znajek mechanism (see Sect. 4.2) is really going on. Its
likelihood would increase if jets were found with Lorentz factors γ significantly
exceeding 10 (see [88] for more details).
(v) Last but not least, future observations of gravitational waves from black
hole collisions [97] offer great hopes of a clean observation of a black hole
geometry, without astrophysical complications.

It is hard to point out any other exact solution of Einstein’s field equations
(or of any kind of field equations?) discovered in the second half of the 20th
century which has had so many impacts on so many diverse areas of physics,
astrophysics, astronomy, and even space science as has had the Kerr metric.

5 Black Hole Uniqueness
and Multi-black Hole Solutions

Since black holes can be formed from the collapse of various matter configu-
rations, it is natural to expect that there will be many solutions of Einstein’s
equations describing black holes. It is expected that the asymptotic final
state of a collapse can be represented by a stationary spacetime, i.e. one
which admits a 1-dimensional group of isometries whose orbits are timelike
near infinity. Strong arguments show [26] that the event horizon of a station-
ary black hole must be a Killing horizon. One of the most remarkable and
surprising results of black hole theory are the sequence of theorems showing
rigorously that the only stationary solution of the Einstein electrovacuum



The Role of Exact Solutions 53

equations that is asymptotically flat and has a regular event horizon is the
Kerr–Newman solution. There is a number of papers on this issue – recent
detailed reviews are given in [80,81]. The intuition gained from exact black
hole solutions in proving the theorems has been essential.

Roughly speaking, the uniqueness proof consists of the following three
parts. First, one demonstrates the “rigidity theorem”, which claims that
nondegenerate (κ �= 0) stationary electrovacuum analytic black holes are
either static or axially symmetric. One then establishes that the Reissner–
Nordström nondegenerate electrovacuum black holes are all static (nonro-
tating) nondegenerate black holes in electrovacuum. Finally, one separately
proves that the nondegenerate Kerr–Newman black holes represent all non-
degenerate axially symmetric stationary electrovacuum black holes.

Although such results were proved more than 10 years ago, recently there
has been new progress in the understanding of the global structure of station-
ary black holes. Again, exact solutions have been inspiring: by gluing together
two copies of the Kerr spacetime in a certain way, Chruściel [80] constructed a
black hole spacetime which is stationary but not axisymmetric, demonstrat-
ing thus that the standard formulation and proof of the rigidity theorem [26]
is not correct. (The reason being essentially that when one extends the isome-
tries from a neighbourhood of the horizon by analytic continuation one has no
guarantee that the maximal analytic extension is unique.) Chruściel proved
“a corrected version of the black hole rigidity theorem”; in the connected
case one can prove a uniqueness theorem for static electrovacuum black holes
with degenerate horizons. The uniqueness theorem for static degenerate black
holes which demonstrates that the extreme Reissner–Nordström black hole is
the only case, is of importance also in string theory. The most unsatisfactory
feature of the rigidity theorem is the assumption of analyticity of the metric
in a neighborhood of the event horizon. In this context, Chruściel [80] men-
tions the case of Robinson–Trautman exact analytic metrics, which can be
smoothly but not analytically extended through an event horizon [163]. We
shall discuss this issue in somewhat greater detail in Sect. 10.

The black hole uniqueness theorems indicated above are concerned with
only single black holes. (Corresponding spacetimes contain an asymptotically
flat hypersurface Σ with compact interior and compact connected boundary
∂Σ which is located on the event horizon.) Consequently a question naturally
arises as to whether one can generalize the theorems to some multi-black
hole solutions. In classical physics a solution exists in which a system of n
arbitrarily located charged mass points with charges qi and masses mi, such
that |qi| =

√
Gmi, is in static equilibrium. In relativity the metric

ds2 = −V −2dt2 + V 2 (
dx2 + dy2 + dz2) , (30)

with time-independent V satisfying Laplace’s equation

∇2V =
∂2V

∂x2 +
∂2V

∂y2 +
∂2V

∂z2 = 0 , (31)
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is a solution of the Einstein–Maxwell equations with the electric field

E = ∇V −1, (32)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z). (In standard units E =
√

G∇V −1.) The sim-
plest solution of this form is the Majumdar–Papapetrou metric, correspond-
ing to a linear combination of n “monopole sources” with masses mi > 0 and
charges qi = mi, located at arbitrary points xi:

V = 1 +
n∑

i=1

mi

| x− xi |
. (33)

Hartle and Hawking [164] have shown that every such spacetime can be an-
alytically extended to a spacetime representing n degenerate charged black
holes in static equilibrium. The points x = xi are actually event horizons of
area 4πm2

i . For the case of one black hole, the metric (30) is just the extreme
Reissner–Nordström black hole in isotropic coordinates.

A uniqueness theorem for the Majumdar–Papapetrou metrics is not avail-
able, although some partial answers are known (see [165,166] for more de-
tails). It is believed that these are the only asymptotically flat, regular multi-
black hole solutions of the Einstein–Maxwell equations. In fact, such a result
would exclude an interesting possibility that a repulsive gravitational spin-
spin interaction between two (or more) rotating, possibly charged, black holes
can overcome their gravitational attraction and thus that there exists in Ein-
stein’s theory of gravitation – in contrast to Newton’s theory – a stationary
solution of the two-body problem.

Among new solutions discovered by modern generating techniques, there
are the solutions of Kramer and Neugebauer which represent a nonlinear su-
perposition of Kerr black holes (see [167] for a review). These solutions have
been the subject of a number of investigations which have shown that spin-
spin repulsion is not strong enough to overcome attraction. In particular,
two symmetrically arranged equal black holes cannot be in stationary equi-
librium. The situation might change if one considers two Kerr–Newman black
holes [168]. Here one has four forces to reckon with: gravitational and electro-
magnetic Coulomb-type interactions, and gravitational and electromagnetic
spin-spin interactions. One can then satisfy the conditions which render the
system of two Kerr–Newman black hole free of singularities on the axis, and
make the total mass of the system positive. However, there persists a singu-
larity in the plane of symmetry away from the axis [168]. In view of this result
we have conjectured that even with electromagnetic forces included one can-
not achieve balance for two black holes, except for the exceptional case of two
nonrotating extreme (degenerate) Reissner–Nordström black holes. Recently,
some new rigorous results concerning the (non)existence of multi-black hole
stationary, axisymmetric electrovacuum spacetimes have been obtained [169]
(see also [80]), but the “decisive theorem” is still missing.
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In connection with the problem of the balance of gravity by a gravitational
spin-spin interaction, we should mention that there exists the solution of
Dietz and Hoenselaers [170] in which balance of the two rotating “particles”
is achieved. However, the “sources” are complicated naked singularities which
become Curzon–Chazy “particles” (see Sect. 6.1) if the rotation goes to zero,
and it is far from clear whether appropriate physical interior solutions can
be constructed.

In 1993, Kastor and Traschen [171] found an interesting family of solutions
to the Einstein–Maxwell equations with a non-zero cosmological constant
Λ. They describe an arbitrary number of charged black holes in a “back-
ground” de Sitter universe. In the limit of Λ = 0 these solutions become
Majumdar–Papapetrou static metrics. In contrast to these metrics, the cos-
mological multi-black hole solutions with Λ > 0 are dynamical. Remarkably,
one can construct solutions which describe coalescing black holes. In some
cases cosmic censorship is violated – a naked singularity is formed as a result
of the collision [172]. Although these solutions do not have smooth horizons,
the singularities are mild, and geodesics can be extended through them. The
metric is always at least C2. Since the solutions are dynamical, one may in-
terpret the non-smoothness of the horizons as a consequence of gravitational
and electromagnetic radiation. In this sense, the situation is analogous to the
case of the Robinson–Trautman spacetimes discussed in Sect. 10. In five or
more dimensions, however, one can construct static multi-black hole solutions
with Λ = 0, which do not have smooth horizons [173]. The solutions of Kas-
tor and Traschen also inspired a new and careful analysis [174] of the global
structure of the Reissner–Nordström–de Sitter spacetimes characterized by
mass, charge, and cosmological constant. The structure is considerably richer
than that with Λ = 0. Most recently, the hoop conjecture (giving the crite-
rion as to whether a black hole forms from a collapsing system) was discussed
[175] by analyzing the solution of Kastor and Traschen.

6 On Stationary Axisymmetric Fields
and Relativistic Disks

6.1 Static Weyl Metrics

The static axisymmetric vacuum metrics in Weyl’s canonical coordinates ρ ∈
[0,∞), z, t ∈ IR, ϕ ∈ [0, 2π) have the form

ds2 = e−2U
[
e2k

(
dρ2 + dz2) + ρ2dϕ2]− e2Udt2. (34)

The function U(ρ, z) satisfies flat-space Laplace’s equation

∂2U

∂ρ2 +
1
ρ

∂U

∂ρ
+

∂2U

∂z2 = 0. (35)
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The function k(ρ, z) is determined from U by quadrature up to an addi-
tive constant. The axis ρ = 0 is free of conical singularities at places where
limρ→0 k = 0.

The mathematically simplest example is the Curzon–Chazy solution in
which U = −m/

√
ρ2 + z2 is the Newtonian potential of a spherical point

particle. The spacetime, however, is not spherically symmetric. In fact, one
of the lessons which one has learned from this solution is the directional char-
acter of the singularity at ρ2 + z2 = 0. For example, the limit of the invariant
RαβγδR

αβγδ depends on the direction of approach to the singularity. The
singularity has a character of a ring through which some timelike geodesics
may pass to a Minkowski region [176].

Various studies of the Weyl metrics indicated explicitly how important it
is always to check whether a result is not just a consequence of the choice
of coordinates. There is the subclass of Weyl metrics generated by the New-
tonian potential of a constant density line mass (“rod”) with total mass M
and (coordinate) length l, which is located along the z-axis with the middle
point at the origin. These are Darmois-Zipoy-Vorhees metrics, called also the
γ-metrics [64]. The Schwarzschild solution (a spherically symmetric metric!)
is a special case in this subclass: it is given by the potential of the rod with
l = 2M . Clearly, in general there is no correspondence between the geometry
of the physical source and the geometry of the Newtonian “source” from the
potential of which a Weyl metric is generated.

A survey of the best known Weyl metrics, including some specific solutions
describing fields due to circular disks is contained in [64]. More recently,
Bičák, Lynden-Bell and Katz [177] have shown that most vacuum static Weyl
solutions, including the Curzon and the Darmois-Vorhees-Zipoy solutions,
can arise as the metrics of counterrotating relativistic disks (see [177] also for
other references on relativistic disks). The simple idea which inspired their
work is commonly used in Newtonian galactic dynamics [6]: imagine a point
mass placed at a distance b below the centre ρ = 0 of a plane z = 0. This gives
a solution of Laplace’s equation above the plane. Then consider the potential
obtained by reflecting this z ≥ 0 potential in z = 0 so that a symmetrical
solution both above and below the plane is obtained. It is continuous but
has a discontinuous normal derivative on z = 0, the jump in which gives
a positive surface density on the plane. In galactic dynamics one considers
general line distributions of mass along the negative z-axis and, employing
the device described above, one finds the potential-density pairs for general
axially symmetric disks. In [178], an infinite number of new static solutions
of Einstein’s equations were found starting from realistic potentials used to
describe flat galaxies, as given recently by Evans and de Zeeuw [179].

Although these disks are Newtonian at large distances, in their central
regions interesting relativistic features arise, such as velocities close to the
velocity of light, and large redshifts. In a more mathematical context, some
particular cases are so far the only explicit examples of spacetimes with a
“polyhomogeneous” null infinity (cf. [180] and Sect. 9), and spacetimes with
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a meaningful, but infinite ADM mass [178]. New Weyl vacuum solutions
generated by Newtonian potentials of flat galaxies correspond to both finite
and semi-infinite rods, with the line mass densities decreasing according to
general power laws. It is an open question what kinds of singularities rods
with different density profiles represent.

Very recently, new interesting examples of the static solutions describing
self-gravitating disks or rings, and disks or rings around static black holes
have been constructed [181–183] and the effects of the fields on freely moving
test particles studied [181]. Exact disks with electric currents and magnetic
fields have also been considered [184].

Employing the Weyl formalism, one can describe nonrotating black holes
strongly distorted by the surrounding matter. The influence of the matter can
be so strong that it may even cause the horizon topology to be changed from
spherical to toroidal (see [75] and references therein).

Finally, we have to mention two solutions in the Weyl class, which were
found soon after the birth of general relativity, and have not lost their in-
fluence even today. The first, discovered by Bach and Weyl, is assigned by
Bonnor [64] as “probably the most perspicacious of all exact solutions in
GR”. It refers to two Curzon–Chazy “monopoles” on the axis of symmetry.
One finds that the metric function k has the property that limρ→0 k �= 0, so
that there is a stress described by a conical singularity between the particles,
which holds particles apart. A similar solution can be constructed for the
Schwarzschild “particles” (black holes) held apart by a stress. These cases
can serve as one of the simplest demonstrations of the difference between
the Einstein theory and field theories like the Maxwell theory: it is only in
general relativity in which field equations involve also equations of motion.

The second “old” solution which has played a very significant role is the
metric discovered by Levi–Civita. It belongs to the class of degenerate (type
D) static vacuum solutions which form a subclass of the Weyl solutions. In the
invariant classification of the degenerate solutions by Ehlers and Kundt [53],
this solution is contained in the last, third subclass. That is why Ehlers and
Kundt called it the C-metric, and it is so well known today. We shall discuss
the C-metric later (Sect. 11) in greater detail since, as it has been learned in
the 1970s, it is actually a radiative solution representing uniformly accelerated
black holes. What Levi–Civita found and Ehlers and Kundt analyzed is only
a portion of spacetime in which the boost Killing vector is timelike, and
the coordinates can thus be found there (analogous to the coordinates in
a uniformly accelerated frame in special relativity) in which the metric is
time-independent.

6.2 Relativistic Disks as Sources of the Kerr Metric
and Other Stationary Spacetimes

Thanks to the black hole uniqueness theorems (Sect. 5), the Kerr metric rep-
resents the unique solution describing all rotating vacuum black holes. Nev-
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ertheless, although the cosmic censorship conjecture, on which the physical
relevance of the Kerr metric rests, is a very plausible hypothesis, it remains,
as was noted in several places above, one of the central unresolved issues in
relativity. It would thus support the significance of the Kerr metric if a phys-
ical source were found which produces the Kerr field. The situation would
then resemble the case of the spherically symmetric Schwarzschild metric
which can represent both a black hole and the external field due to matter.

This has been realized by many workers. The review on the “Sources for
the Kerr Metric” [185] written in 1978, contains 71 references, and concludes
with: “Destructive statements denying the existence of a material source for
the Kerr metric should be rejected until (if ever) they are reasonably justi-
fied.” The work from 1991 gives “a toroidal source”, consisting of “a toroidal
shell . . . , a disk . . . and an annulus of matter interior to the torus” [186].
The masses of the disk and annulus are negative. To summarize in Hermann
Bondi’s way, the sources suggested for the Kerr metric have not been the
easiest materials to buy in the shops . . .

The situation is somewhat different in the special case of the extreme
Kerr metric, where there is a definite relationship between mass and angular
momentum. The numerical study [187] of uniformly rotating disks indicated
how the extreme Kerr geometry forms around disks in the “ultrarelativistic”
limit. These numerical results have been supported by important analytical
work (see Sect. 6.3). However, in the case of a general Kerr metric physical
sources had not been found before 1993.

A method similar to that of constructing disk sources of static Weyl space-
times (described in Sect. 5.1) has been shown to work also for axisymmetric,
reflection symmetric, and stationary spacetimes [188,189]. It is important to
realize that although now no metric function solves Laplace’s equation as
in the static case, we may view the procedure described in Sect. 5.1 as the
identification of the surface z = b with the surface z = −b. The field then
remains continuous, but the jump of its normal derivatives induces a matter
distribution in the disk which arises due to the identification of the surfaces.
What remains to be seen, is whether the material can be “bought in the
shops”. This idea can be employed for all known asymptotically flat station-
ary vacuum spacetimes, for example for the Tomimatsu-Sato solutions, for
the “rotating” Curzon solution, or for other metrics (cf. [61] for references).

Any stationary axisymmetric vacuum metric can be written in canonical
coordinates (t, ϕ, ρ, z) in the form [61]

ds2 = e−2U
[
e2k (dρ2 + dz2) + ρ2dϕ2)

]
− e2U (dt + Adϕ)2 , (36)

where U , k, and A are functions of ρ, z. For the Kerr solution (mass M ,
specific angular momentum a ≥ 0), the functions U, k,A are ratios of poly-
nomials when expressed in spheroidal coordinates [61].

Now, identify the “planes” z = b = constant > 0 and z = −b (this iden-
tification leads to disks with zero radial pressure). With the Kerr geometry



The Role of Exact Solutions 59

the matching is more complicated than in the static cases, and therefore,
one has to turn to Israel’s covariant formalism (see [190] for its recent exposi-
tion). Using this formalism one is able to link the surface stress-energy tensor
of the disk arising from this identification, to the jump of normal extrinsic
curvature across the timelike hypersurface given by z = b (with the jump be-
ing determined by the discontinuities in the normal derivatives in functions
U, k,A).

The procedure leads to physically plausible disks made of two streams
of collisionless particles, that circulate in opposite directions with differen-
tial velocities [188,189]. Although extending to infinity, the disks have fi-
nite mass and exhibit interesting relativistic properties such as high veloci-
ties, large redshifts, and dragging effects, including ergoregions. Physical disk
sources of Kerr spacetimes with a2 > M2 can be constructed (though these
are “less relativistic”). And the procedure works also for electrovacuum sta-
tionary spacetimes. The disks with electric current producing Kerr–Newman
spacetimes are described in [191], where the conditions for the existence of
(electro)geodesic streams are also discussed.

The power and beauty of the Einstein field equations is again illustrated:
the character of exact vacuum fields determines fully the physical character-
istics of their sources. In a more sophisticated way, this is seen in the problem
of relativistic rigidly (uniformly) rotating disks of dust.

6.3 Uniformly Rotating Disks

The structure of an infinitesimally thin, finite relativistic disk of dust par-
ticles which rotate uniformly around a common centre was first explored
by J. Bardeen and R. Wagoner 25 years ago [187]. By developing an effi-
cient expansion technique in the quantity δ = zc/(1 + zc), zc denoting the
central redshift, they obtained numerically a fairly complete picture of the
behaviour of the disk, even in the ultrarelativistic regime (δ → 1). In their
first letter from 1969 they noted that “there may be some hope of finding an
analytic solution”. Today such a hope has been substantiated, thanks to the
work of G. Neugebauer and R. Meinel (see [192,193] and references therein).
The solution had, in fact, to wait until the “soliton-type-solution generating
techniques” for nonlinear partial differential equations had been brought over
from applied mathematics and other branches of physics to general relativity,
starting from the end of the 1970s.

These techniques have been mainly applied only in the vacuum cases so
far, but this is precisely what is in this case needed: the structure of the
thin disk enters the field equations only through the boundary conditions at
z = 0, 0 ≤ ρ ≤ a (a is the radius of the disk). The specific procedures which
enabled Neugebauer and Meinel to tackle the problem are sophisticated and
lengthy. Nevertheless, we wish to mention them telegraphically at least, since
they represent the first example of solving the boundary value problem for a
rotating object in Einstein’s theory by analytic methods.
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In the stationary axisymmetric case, Einstein’s vacuum field equations
for the metric (18) imply the well-known Ernst equation (see e.g. [61]) – a
nonlinear partial differential equation for a complex function f of ρ and z:

(Ref)
[
f,ρρ + f,zz +

1
ρ
f,ρ

]
= f2

,ρ + f2
,z, (37)

where the Ernst potential

f(ρ, z) = e2U + ib, (38)

with U(ρ, z) being the function entering the metric (36), function b(ρ, z) is a
“potential” for A(ρ, z) in (37),

A,ρ = ρ e−4Ub,z, A,z = −ρ e−4Ub,ρ, (39)

and the last function k(ρ, z) in (37) can be determined from U and b by
quadratures.

The Ernst equation can be regarded as the integrability condition of a
system of linear equations for a complex matrix Φ, which is a function of
ρ + iz, ρ− iz, and of a (new) complex parameter λ. Knowing Φ, one can de-
termine f from Φ at λ = 1. Now the problem of solving the linear system can
be reformulated as the so called Riemann–Hilbert problem in complex func-
tion theory. (This, very roughly, means the following: let K be a closed curve
in the complex plane and F (K) a matrix function given on K; find a matrix
function Φin which is analytic inside L, and Φout analytic outside K such
that ΦinΦout = F on K.) The Riemann–Hilbert problem can be formulated
as an integral equation. The hardest problem with which Neugebauer and
Meinel were faced was in connecting the specific physical boundary values of
f on the disk with the functions entering the Riemann–Hilbert problem (with
contour K being determined by the position of the disk in the ρ, z plane),
and with the corresponding integral equation. The fact that they succeeded
and found the solution of their integral equation is a remarkable achievement
in mathematical physics. The gravitational field and various physical char-
acteristics of the disk (e.g. the surface density) are given up to quadratures
in terms of ultraelliptic functions [192], which can be numerically evaluated
without difficulties. This result, however, may appear as a “lucky case”: it
does not imply that one will be able to tackle similarly more complicated sit-
uations as, for example, thin disks with pressure, with non-uniform rotation,
or 3-dimensional rotating bodies such as neutron stars.

Many physical characteristics of uniformly rotating relativistic disks such
as their surprisingly high binding energies, the high redshifts of photons emit-
ted from the disks, or the dragging of inertial frames in the vicinity of the
disks, were already obtained with remarkable accuracy in [187], as the ex-
act solution now verifies. Here we only wish to demonstrate the fundamental
difference between the Newtonian and relativistic case, as it is illustrated
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Fig. 8. The general relativistic (“Einsteinian”) thin disk of rigidly rotating dust
constructed by Neugebauer and Meinel, compared with the analogous disk in New-
tonian theory. If the angular momentum is too low, the disk forms a rotating (Kerr)
black hole. (From [193].)

in Fig. 8. The rigidly rotating disk of dust of Neugebauer and Meinel repre-
sents the relativistic analogue of a classical Maclaurin disk. For the Maclaurin
disk, it is easy to show that the (dimensionless) quantities y = 2GΩM/c3 and
x = GM2/cJ (M and J are the total mass and angular momentum respec-
tively, and Ω is the angular velocity) are related by y = (9π2/125)x3. For a
fixed M the angular velocity Ω ∼ y can be increased arbitrarily, with J being
correspondingly decreased. For relativistic disks, however, there is an upper
bound on Ω given by Ωmax = c3/2GM , whereas J is restricted by the lower
bound Jmin = GM2/c. With an angular momentum too low, a rigidly rotat-
ing disk cannot exist. If we “prepare” such a disk, it immediately begins to
collapse and forms – assuming the cosmic censorship – a rotating Kerr black
hole with x = GM2/cJ > 1. (Notice that the assumption of rigid rotation
is here crucial: the differentially rotating disks considered in the preceding
section can have an arbitrary value of x.) Since one can define the angular
velocity Ω(M,J) of the horizon of a Kerr hole, one may consider y(x) for
black hole states with x > 1 (cf. Fig 8). The rigidly rotating disk states and
the black hole states just “meet” at y = x = 1. In the ultrarelativistic limit
the gravitational field outside the disk starts to be unaffected by the detailed
structure of the disk – it approaches the field of an extremely rotating Kerr
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black hole with x = 1. Such a result had already been obtained by Bardeen
and Wagoner. However, it is only now, with the exact solution available, that
it can be investigated with full rigor. It gives indirect evidence that Kerr
black holes are really formed in the gravitational collapse of rotating bodies.

As noticed also by Bardeen and Wagoner, in the ultrarelativistic limit
the disk itself “becomes buried in the horizon of the extreme Kerr metric,
surrounded by its own infinite, non asymptotically flat universe” (see [194] for
a recent detailed analysis of the ultrarelativistic limit). Similar phenomena
arise also in the case of some spherical solutions of Einstein–Yang–Mills–Higgs
equations (cf. [195] and Sect. 13).

7 Taub-NUT Space

The name of this solution of vacuum Einstein’s equations fits both to the
names of its discoverers (Taub–Newman–Unti–Tamburino) and to its curious
properties. Owing to these properties (which induced Misner [196] to consider
the solution “as a counterexample to almost anything”), this spacetime has
played a significant role in exhibiting the type of effects that can arise in
strong gravitational fields.

Taub [197] discovered an empty universe with four global Killing vectors
almost half a century ago, during his pioneering study of metrics with several
symmetries. By continuing the Taub universe through its horizon one arrives
in NUT space. NUT space, however, was only discovered in 1963 by a different
method [198]. In fact, it could have been obtained earlier by applying the
transformation given in Jürgen Ehlers’ dissertation [54] and his talk at the
GR2 conference in Royaumont in 1959 [55]. This transformation gives the
recipe for obtaining stationary solutions from static ones. How the NUT
space can be obtained by applying this transformation to the Schwarzschild
metric was demonstrated explicitly by Ehlers at GR4 in London in 1965 [56].

7.1 A New Way to the NUT Metric

Here we shall briefly mention a simple, physically appealing new derivation
of the NUT metric given recently by Lynden-Bell and Nouri-Zonoz (LBNZ)
[199]. Their work also shows how even uncomplicated solutions may still be
of interest in unexpected contexts. LBNZ’s inspiration to study the NUT
space has in fact come from Newton’s Principia! In one of his scholia Newton
discusses motion under the standard central force plus a force which is normal
to the surface swept out by the radius vector to the body which is describing
the non-coplanar path. A simple interesting case is the motion of mass m0
satisfying the equation

m0
d2r

dt2
= −V

′
(r) r̂ +

m0

c
v ×Bg, (40)
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where r̂ = r/r,
Bg = −Q r̂/r2, Q = Q̃ c/m0, (41)

Q and Q̃ are constants, and c is the velocity of light. Here we write c explicitly
though c = 1, to make the analogy with magnetism. Indeed, Bg is the field of
a “gravomagnetic” monopole of strength Q. The classical orbits of particles
lie on cones which, if the monopole is absent, flatten into a plane [199].

It was known that NUT space corresponds to the mass with a gravomag-
netic monopole, but this was never used in such a physical way as by LBNZ
for its derivation. The main point is to start from the well-known split of the
stationary metrics as described in Landau and Lifshitz [139] (see [200] for a
covariant approach, and the contribution of Beig and Schmidt in the present
volume)

ds2 = −e−2ν(dt−Aidx
i)

2
+ γijdx

idxj , (42)

where ν,Ai, γij are independent of t. This form is unique up to the choice
of time zero: t

′
= t + χ(xi) implies again the metric in the form (42) in

(t
′
, xi), with the “vector potential” undergoing a gauge transformation A′

i =
Ai + ∇iχ. Writing down the equation of motion of a test particle in metric
(42), in analogy with the equation of motion of a charged particle in an
electromagnetic field, one is naturally led to define the “gravoelectric” and
“gravomagnetic” fields by

Eg = ∇ν, Bg = ∇× A, (43)

where “∇×” is with respect to γij . Following the problem of §95 in [139]
one then rewrites all Einstein’s equations in terms of the fields (43), the
metric γij , and their derivatives. To find the vacuum spherically symmetric
spatial γ-metric one takes γijdx

idxj = e2λdr2 +r2(dθ2 +sin2 θ dϕ2), and one
assumes ν = ν(r), and Br

g = −Qe−λ/r2. The Einstein equations then imply
the spacetime metric, which is not spherically symmetric, in the form

ds2 = −e−2ν

(
dt− 2q (1 + cos θ) dϕ

)2

+
(
1− q2/r2)−1

e2νdr2

+ r2 (
dθ2 + sin2 θ dϕ2) , (44)

where q = Q/2 = constant,

e−2ν = 1− 2r−2
(
q2 + m

√
r2 − q2

)
, (45)

and the vector potential Aϕ = 2q(1 + cos θ) satisfies (43). (The factor (1 −
q2/r2) should be raised to the power −1 in equation (3.22) in [199], as it
is clear from (3.20).) Equation (44) is the NUT metric, with r being the
curvature coordinate of spheres r = constant. With q = 0 the metric (44)
becomes the Schwarzschild metric in the standard Schwarzschild coordinates.
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More commonly the metric (44) is written in the form

ds2 = −V

(
dt̃ + 4q sin2 θ

2
dϕ

)2

+ V −1dr̃2 +
(
r̃2 + q2) (

dθ2 + sin2 θ dϕ2) ,

(46)

V = 1− 2
mr̃ + q2

r̃2 + q2 , (47)

which can be obtained from (44) by putting

r̃ =
√

r2 − q2, t̃ = t− 4qϕ. (48)

Recently, Ehlers [201] considered a Newtonian limit of NUT space within
his frame theory which encompasses general relativity and Newton–Cartan
theory (a slight generalization of Newton’s theory). The main purpose of
Ehlers’ frame theory is to define rigorously what is meant by the statement
that a one parameter family of relativistic spacetime models converges to a
Newton–Cartan model or, in particular, to a strictly Newtonian model.

The strictly Newtonian limit occurs when the Coriolis angular velocity
field ω, related to the connection coefficients Γ i

tj in the Newton–Cartan the-
ory, depends on time only. NUT spacetimes approach a truly Newton–Cartan
limit with spatially non-constant radial Coriolis field ωr̃ = −q/r̃2, which in
this limit coincides with the Newtonian gravomagnetic field. As in the anal-
ogous classical problem with the equation of motion (40), the geodesics in
NUT space lie on cones. This result has been used to study gravitational lens-
ing by gravomagnetic monopoles [199]: they twist the rays that pass them in
a characteristic manner, different from that due to rotating objects.

The metrics (44) and (46) appear to have a preferred axis of fixed points
of symmetry. This is a false impression since we can switch the axis into any
direction by a gauge transformation. For example, the metric (44) has a coni-
cal singularity at θ = 0 but is regular at θ = π, whereas the metric (46) has a
conical singularity at θ = π but is regular at θ = 0. The metrics are connected
by the simple gauge transformation, i.e. t → t̃ = t − 4qϕ. A mass endowed
with a gravomagnetic monopole appears as a spherically symmteric object
but the spacetime is not spherically symmetric according to the definition
given in Sect. 2.1. Nevertheless, there exist equivalent coordinate systems in
which the axis can be made to point in any direction – just as the axis of the
vector potential of a magnetic monopole can be chosen arbitrarily. For further
references on interpreting the NUT metric as a gravomagnetic monopole, see
[199] and the review by Bonnor [64].

7.2 Taub-NUT Pathologies and Applications

By introducing two coordinate patches, namely the coordinates of metric (44)
to cover the south pole (θ = π) and those of (46) the north pole (θ = 0), the
rotation axis can be made regular. However since ϕ is identified with period
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2π, equation (48) implies that t and t̃ have to be identified with the period
8πq. Then observers with (r̃, θ, ϕ) = constant follow closed timelike lines if V

in (47) is positive, i.e. if r̃ > r̃0 = m+(m2 + q2)
1
2 . The hypersurface r̃ = r̃0 is

the null hypersurface – horizon, below which lines (t, θ, ϕ) = constant become
spacelike. Because of the periodic identification of t and t̃, the hypersurfaces
of constant r̃ change the topology from S2 × R1 to S3, on which t/2q, θ, ϕ
become Euler angle coordinates.

The region with V < 0 is the Taub universe: it has homogeneous but
non-isotropic space sections r̃ = constant. The coordinate r̃, allowed to run
from −∞ to +∞, is a timelike coordinate, and is naturally denoted by t in
the Taub region.

In addition to the closed timelike lines in the NUT region there are fur-
ther intriguing pathologies exhibited by the Taub-NUT solutions. Here we
just list some of them and refer to the relevant literature [26,27,196]. The
Taub region is globally hyperbolic: its entire future and past history can be
determined from conditions given on a spacelike Cauchy hypersurface. How-
ever, this is not the case with the whole Taub-NUT spacetime. As in the
Reissner–Nordström spacetimes (Sect. 3), there are Cauchy horizons H±(Σ)
of a particular spacelike section Σ of maximal proper volume lying between
the globally hyperbolic Taub regions and the causality violating NUT re-
gions. H±(Σ) are smooth, compact null hypersurfaces diffeomorphic to S3

– the generators of such null surfaces are closed null geodesics. The Taub
region is limited between t− ≤ t ≤ t+, where t± are roots of V in equa-
tion (47) (with the interchange t ↔ r̃). This region is compact but there
are timelike and null geodesics which remain within it and are not complete.
(See [27] for a nice picture of these geodesics spiralling around and approach-
ing H+(Σ) asymptotically.) This pathological behaviour of “the incomplete
geodesics imprisoned in a compact neighbourhood of the horizon” was inspi-
rational in the definition of singularities [77] – one meets here the example in
which the geodesic incompleteness is not necessarily connected with strong
gravitational fields. It can be shown, however, that after an addition of even
the slightest amount of matter this pathological behaviour will not take place
– true singularities arise.

This enables one to consider the time between t− and t+ as the lifetime
of the Taub universe. Wheeler [202] constructed a specific case of the Taub
universe which will live as long as a typical Friedmann closed dust model
(∼ 1010 years) but will have a volume at maximum expansion smaller by
a factor of 5 × 1010. This example thus appears to be a difficulty for the
anthropic principle.

Taub space seems also to be the only known example giving the possibility
of making inequivalent NUT-like extensions which lead to a non-Hausdorff
spacetime manifold [26,200,203].

The Taub-NUT solution plays an important role in cosmology and quan-
tum gravity. Here we wish to note yet two other recent applications of this
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space. About ten years ago, interest was revived in closed timelike lines, time
machines, and wormholes. One of the leaders in this activity, Kip Thorne,
explains in [204] in a pedagogical way the main recent results on closed time-
like curves and wormholes by using “Misner space” – Minkowski spacetime
with identification under a boost, which Misner introduced as a simplified
version of Taub-NUT space.

The second application of the Taub-NUT space is still more remarkable –
it plays an important role outside general relativity. The asymptotic motion of
monopoles in (super-)Yang–Mills theories corresponds to the geodesic motion
in Euclidean Taub-NUT space [205]. Euclidean Taub-NUT spaces have been
discussed in many further works on monopoles in gauge theories. One of
the latest of these works [206], on the exact T -duality (which relates string
theories compactified on large and small tori) between Taub-NUT spaces and
so called “calorons” (instantons at finite temperature defined on R3 × S1),
gives also references to previous contributions.

8 Plane Waves and Their Collisions

8.1 Plane-Fronted Waves

The history of gravitational plane waves had began already by 1923 with
the paper on spaces conformal to flat space by Brinkmann. Interest in these
waves was revived in 1937 by Rosen, and in the late 1950s by Bondi, Pirani
and Robinson, Holy, and Peres (see [53,61] for references). A comprehensive
geometrical approach to these spacetimes soon followed in the classical trea-
tise by Jordan, Ehlers and Kundt [57], and in the subsequent well-known
chapter by Ehlers and Kundt [53]. As an application of various newly devel-
oped methods to analyze gravitational radiation, and as a simple background
to test various physical theories, plane waves have proved to be a useful and
stimulating arena which offers interesting contests even today, as we shall
indicate by a few examples in Sect. 8.2.

Consider a congruence of null geodesics (rays) xα(v) such that dxα/dv =
kα, kαkα = 0, kα;βk

β = 0, v being an affine parameter. In general a geodesic
congruence is characterized by its expansion θ, shear |σ| and twist ω given
by (see e.g. [19])

θ =
1
2
kα
;α, |σ| =

√
1
2
k(α;β)kα;β − θ2, (49)

ω =

√
1
2
k[α;β]kα;β . (50)

According to the definition given by Ehlers and Kundt [53] a vacuum
spacetime is a “plane-fronted gravitational wave” if it contains a shearfree
|σ| = 0 geodesic null congruence, and if it admits “plane wave surfaces”
(spacelike 2-surfaces orthogonal to kα). This definition is inspired by plane
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electromagnetic waves in Maxwell’s theory. Electromagnetic plane waves are
null fields (“pure radiation fields”): there exists a null vector kα, tangent to
the rays, which is transverse to the electromagnetic field Fαβ , i.e. Fαβk

β = 0,
F ∗

αβk
β = 0, and the quadratic invariants of which vanish, FαβF

αβ = 0 =
FαβF

∗αβ , where F ∗
αβ is dual to Fαβ . Analogously, Petrov type N gravita-

tional fields (see [61]) are null fields with rays tangent to kα (the “quadru-
ple Debever-Penrose null vector”), and with the Riemann tensor satisfying
Rαβγδk

δ = 0, RαβγδR
αβγδ = 0, and RαβγδR∗

αβγδ = 0.20 Then the Bianchi
identities and the Kundt-Thompson theorem for type N solutions in vacuum
spacetimes (also more generally, under the presence of a nonvanishing cos-
mological constant) imply that the shear of kα must necessarily vanish (see
[61,207]). Because of the existence of plane wave surfaces, the expansion (49)
and twist (50) must vanish as well, θ = ω = 0. In this way we arrive at
the Kundt class of nonexpanding, shearfree and twistfree gravitational waves
[61]. The best known subclass of these waves are “plane-fronted gravitational
waves with parallel rays” (pp-waves) which are defined by the condition that
the null vector kα is covariantly constant, kα;β = 0. Thus, automatically kα

is the Killing vector, and θ = |σ| = ω = 0.
Ehlers and Kundt [53] give several equivalent characterizations of the

pp-waves and show, following their previous work [57], that in suitable null
coordinates with a null coordinate u such that kα = u,α and kα = (∂/∂v)α,
the metric has the form

ds2 = 2dζdζ̄ − 2dudv − 2H(u, ζ, ζ̄)du2, (51)

where H is a real function dependent on u, and on the complex coordinate ζ
which spans the wave 2-surfaces u = constant, v = constant. These 2-surfaces
with Euclidean geometry are thus contained in the wave hypersurfaces u =
constant and cut the rays given by (u, ζ) = constant, v changing. The vacuum
field equations imply 2-dimensional Laplace’s equation

H,ζζ̄ = 0, (52)

so that we can write
2H = f(u, ζ) + f̄(u, ζ̄), (53)

where f(u, ζ) is an arbitrary function of u, analytic in ζ. To characterize the
curvature in the waves and their effect on test particles it is convenient to
introduce the null complex tetrad, such that at each spacetime point, together
with the preferred null vector kα, we have a null vector lα, lαkα = −1, and
complex spacelike vector mα satisfying mαm̄α = 1,mαkα = mαlα = 0. For
20 This algebraic (local) analogy between null fields exists also between electromag-

netic and gravitational shocks (possible discontinuities across null hypersurfaces),
and in the asymptotic behaviour of fields at large distances from sources (the
“peeling property” – see e.g. [19,27]).



68 Jǐŕı Bičák

the metric (51) the only nonvanishing projection of the Weyl (in the vacuum
case, the Riemann) tensor onto this tetrad is the (Newman–Penrose) scalar

Ψ4 = Cαβγδl
αm̄βlγmδ = H,ζ̄ζ̄ , (54)

which denotes a transverse component of the wave propagating in the kα

direction. As shown by Ehlers and Kundt [53] (see also e.g. [61]), though in
a somewhat different notation, we can use again an analogy with the elec-
tromagnetic field – described for an analogous plane wave by the transverse
component φ2 = Fαβm̄

αlβ – and write Ψ4 = AeiΘ, where real A > 0 is con-
sidered as the amplitude of the wave, and at each spacetime point associate
Θ with the plane of polarization. Vacuum pp-waves with Θ = constant are
called linearly polarized.

Consider a free test particle (observer) with 4-velocity u and a neighbour-
ing free test particle displaced by a “connecting” vector Zα(τ). Introducing
then the physical frame e(i) which is connected with the observer such that
e(0) = u and e(i) are connected with the null tetrad vectors by

m = 1√
2

(
e(1) + ie(2)

)
, m̄ = 1√

2

(
e(1) − ie(2)

)
,

l = 1√
2

(
u− e(3)

)
, k = 1√

2

(
u + e(3)

)
,

(55)

we find that the equation of geodesic deviation in spacetime with only Ψ4 �= 0
implies (see [207])

Z̈(1) = −A+Z(1) + A×Z(2), Z̈(2) = A+Z(2) + A×Z(1), Z̈(3) = 0, (56)

where A+ = 1
2 Re Ψ4, A× = 1

2 Im Ψ4 are amplitudes of “+” and “×” polar-
ization modes, and Z(i) are the frame components of the connecting vector
Z. Since the frame vector e(3) is chosen in the longitudinal direction (the di-
rection of the rays), equation (56) clearly exhibits the transverse character of
the wave. If particles, initially at rest, lie in the (e(1), e(2)) plane, there is no
motion in the longitudinal direction of e(3). The ring of particles is deformed
into an ellipse, the axes of different polarizations are shifted one with respect
to the other by π

4 (such behaviour is typical for linearized gravitational waves
– cf. e.g. [18]). Making a rotation in the transverse plane by an angle ϑ,

e′
(1) = cosϑ e(1) + sinϑ e(2) , e′

(2) = − sinϑ e(1) + cosϑ e(2) , (57)

and taking ϑ = ϑ+(τ) = − 1
2 Arg Ψ4 = − 1

2Θ, then A′
+ = 1

2 |Ψ |, A′
× = 0

– the wave is purely “+” polarized. If Θ = constant, the rotation angle is
independent of time – the wave is rightly considered as linearly polarized.

Hence, with the discovery of pp-waves, the understanding of the proper-
ties of gravitational radiation has become deeper and closer to physics. In
addition, the pp-waves can easily be “linearized” by taking the function H
in the metric (51) to be so small that the spacetime can be considered as a
perturbation of Minkowski space within the linearized theory. Such an “easy
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way” from the linear to fully nonlinear spacetimes is of course paid by their
simplicity.

In general, in fact, the pp-waves have only the single isometry generated by
the Killing vector kα = (∂/∂v)α. However, a much larger group of symmetries
may exist for various particular choices of the function H(u, ζ, ζ̄). Jordan,
Ehlers and Kundt [57] (see also [53,61]) gave a complete classification of the
pp-waves in terms of their symmetries and corresponding special forms of H.
For example, in the best known case of plane waves to which we shall turn
in greater detail below, Ψ4 is independent of ζ, so that after removing linear
terms in ζ by a coordinate transformation, we have

H(u, ζ, ζ̄) = A(u)ζ2 + Ā(u)ζ̄2, (58)

with A(u) being an arbitrary function of u. This spacetime admits five Killing
vectors.

Recently, Aichelburg and Balasin [208,209] generalized the classification
given in [57] by admitting distribution-valued profile functions and allowing
for non-vacuum spacetimes with metric (51), but with H which in general
does not satisfy (52). They have shown that with H in the form of delta-like
pulses,

H(u, ζ, ζ̄) = f(ζ, ζ̄)δ(u), (59)

new symmetry classes arise even in the vacuum case.
The main motivation to consider impulsive pp-waves stems from the met-

rics describing a black hole or a “particle” boosted to the speed of light. The
simplest metric of this type, given by Aichelburg and Sexl [210], is a Schwarz-
schild black hole with mass m boosted in such a way that μ = m/

√
1− w2

is held constant as w → 1. It reads

ds2 = 2dζdζ̄ − 2dudv − 4μ log(ζζ̄)δ(u)du2, (60)

with H clearly in the form (59). This is not a vacuum metric: the energy-
momentum tensor Tαβ = μδ(u)δ(ζ)kαkβ indicates that there is a “point-like
particle” moving with the speed of light along u = 0. The Aichelburg-Sexl
metric and its more recent generalizations have found interesting applications
even outside of general relativity. Some of them will be briefly mentioned in
Sect. 8.2.

Let us now turn to the simplest class of pp-waves, which comprises of the
best known and illuminating examples of exact gravitational waves. These are
the plane waves. They are defined as homogeneous pp-waves in the sense that
the curvature component Ψ4 (see (54)) is constant along the wave surfaces so
that function H is in the form (58). One can write H as in (53) where

f(u, ζ) =
1
2
A(u)eiΘ(u)ζ2, (61)

with linear terms being removed by a coordinate transformation. Just as a
plane electromagnetic wave, a plane gravitational wave is thus completely
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represented by its amplitude A(u) and polarization angle Θ(u) as functions
of the phase u.

The plane waves, including their generalization into the Einstein–Maxwell
theory (an additional term B(u)ζζ̄ then appears in H, both Ψ4 and the elec-
tromagnetic quantity Φ2 being independent of ζ), were already studied in
1926 (see [61]). A real understanding however came only in the late 1950s.
Ehlers and Kundt [53] give various characterizations of this class. For ex-
ample, they prove that a non-flat vacuum field is a pp-wave if and only if
the curvature tensor is complex recurrent, i.e. if Pαβγδ,μ = Pαβγδqμ, where
Pαβγδ = Rαβγδ + i

∗
Rαβγδ; and it is a plane wave if and only if the re-

currence vector qμ is collinear with a real null vector. They also state a
nice theorem showing that the plane wave spacetimes defined by the met-
ric (51), H and f given by (53), (69), ζ = x + iy, and with coordinate
ranges −∞ < x, y, u, v < ∞, are geodesically complete if functions A(u) and
Θ(u) are C1-functions. Quoting directly from [53], “there exist ... complete
solutions free of sources (singularities), proving to think of a graviton field
independent of any matter by which it be generated. This corresponds to the
existence of source-free photon fields in electrodynamics”. Ehlers and Kundt
[53] also state an open problem which, as far as I am aware, has not yet
been solved: to prove that plane waves are the only geodesically complete
pp-waves.

The most telling examples of plane waves are sandwich waves. The ampli-
tude A(u) in (61) need not be smooth: either it can only be continuous and
nonvanishing on a finite interval of u (sandwich), or a step function (shock),
or a delta function (impulse). A physical interpretation of such waves is bet-
ter achieved in other coordinate systems, in which the metric “before” and
“after” the wave is not Minkowskian but has a higher degree of smooth-
ness. For linearly polarized waves (Θ equal to zero), a convenient coordinate
system can be introduced by setting (see e.g. [211]) ζ = (1/

√
2)(px + iqy),

v = (1/2)(t + z + pp′x2 + qq′y2), u = t − z, where ′ = d/du, and functions
p = p(u) and q = q(u) solve equations p′′ + A(u)p = 0 and q′′ −A(u)q = 0.
In these coordinates the metric turns out to be

ds2 = −dt2 + p2dx2 + q2dy2 + dz2. (62)

In double-null coordinates ũ, ṽ, with ũ = u = t − z, ṽ = t + z, and with a
general polarization, the metric can be cast into the form (see e.g. [65,212])

ds2 = −dũdṽ + e−U (eV coshWdx2+e−V coshWdy2−2 sinhWdxdy), (63)

where U, V,W depend on ũ only. This so called Rosen form was used in the
classical paper on exact plane waves by Bondi, Pirani and Robinson [213].

A simple, textbook example [214] of a sandwich wave is the wave with a
“square profile”: A(u) = 0 for u < 0 and u > a2,A(u) = a−2 = constant for
0 ≤ u ≤ a2. The functions p and q which enter (62) are then p = q = 1 at
u ≤ 0, p = cos(u/a), q = cosh(u/a) at 0 ≤ u ≤ a2, and p = −(u/a) sin a +
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constant, q = (u/a) sinh a + constant at a2 ≤ u. This example can be used
to demonstrate explicitly various typical features of plane sandwich gravita-
tional waves within the exact theory: (i) the wave fronts travel with the speed
of light; (ii) the discontinuities of the second derivatives of the metric tensor
are permitted along a null hypersurface, but must have a special structure;
(iii) the waves have a transverse character and produce relative accelera-
tions in test particles; (iv) the waves focus astigmatically initially parallel
null congruences (rays) that are pointing in other directions than the waves
themselves; (v) as a consequence of the focusing, Rosen-type line elements
contain coordinate singularities on a hypersurface behind the waves, and in
general caustics will develop there [214].

The focusing effects imply a remarkable property of plane wave space-
times: no spacelike global hypersurface exists on which initial data can be
specified, i.e. plane wave spacetimes contain no global Cauchy hypersurface.
This can be understood from Fig. 9. Considering a point Q in flat space in
front of the wave, Penrose [215] has shown that its future null cone is dis-
torted as it passes through the wave in such a manner that it is refocused to
either a point R or a line passing through R parallel to the wave front. Any
possible Cauchy hypersurface going through Q must lie below the future null
cone through Q, i.e. below the past null cone of R. Hence, it cannot extend
as a spacelike hypersurface to spatial infinity.

Q

R Plane wave front

Initial hypersurface

Fig. 9. The future null cone of the event Q is distorted as it passes through the
plane wave, and refocused at the event R in such a manner that no Cauchy initial
hypersurface going through Q exists. (From [215].)

8.2 Plane-Fronted Waves: New Developments and Applications

The interest in impulsive waves generated by boosting a “particle” at rest to
the velocity of light by means of an appropriate limiting procedure persists
up to the present. The ultrarelativistic limits of Kerr and Kerr–Newman
black holes were obtained in [216–218], and recently, boosted static multipole
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(Weyl) particles were studied [219]. Impulsive gravitational waves were also
generated by boosting the Schwarzschild–de Sitter and Schwarzschild–anti de
Sitter metrics to the ultrarelativistic limit [220,221].

These types of spacetimes, especially the simple Aichelburg-Sexl metrics,
have been employed in current problems of the generation of gravitational
radiation from axisymmetric black hole collisions and black hole encounters.
The recent monograph by d’Eath [222] gives a comprehensive survey, includ-
ing the author’s new results. There is good reason to believe that spacetime
metrics produced in high speed collisions will be simpler than those corre-
sponding to (more realistic) situations in which black holes start to collide
with low relative velocities. The spacetimes corresponding to the collisions at
exactly the speed of light is an interesting limit which can be treated most
easily. Aichelburg-Sexl metrics are used to describe limiting “incoming states”
of two black holes, moving one against the other with the speed of light. An
approximation method has been developed in which a large Lorentz boost is
applied so that one has a weak shock propagating on a strong shock. One
finds an estimate of 16.8 % for the efficiency of gravitational wave generation
in a head-on speed-of-light collision [222].

Great interest has been stimulated by ’t Hooft’s [223] work on the quan-
tum scattering of two pointlike particles at centre-of-mass energies higher or
equal to the Planck energy. This quantum process has been shown to have
close connection with classical black hole collisions at the speed of light (see
[222,224] and references therein).

Recently, the Colombeau algebra of generalized functions, which enables
one to deal with singular products of distributions, has been brought to gen-
eral relativity and used in the description of impulsive pp-waves in various
coordinate systems [225], and also for a rigorous solution of the geodesic and
geodesic deviation equations for impulsive waves [226]. The investigation of
the equations of geodesics in non-homogeneous pp-waves (with f ∼ ζ3) has
shown that the motion of test particles in these spacetimes is described by
the Hénon-Heiles Hamiltonian which implies that the motion is chaotic [227].

Plane-fronted waves have been used as simple metrics in various other
contexts, for example, in quantum field theory on a given background (see
[228] for recent work), and in string theory [229]. As emphasized very recently
by Gibbons [230], since for pp-waves and type N Kundt’s class (see the be-
ginning of Sect. 8.1) all possible invariants formed from the Weyl tensor and
its covariant derivatives vanish [231], these metrics suffer no quantum correc-
tions to all loop orders. Thus they may offer insights into the behaviour of a
full quantum theory. The invariants vanish also in type III spacetimes with
nonexpanding and nontwisting rays [232].

8.3 Colliding Plane Waves

As with a number of other issues in gravitational (radiation) theory, the
pioneering ideas on colliding plane gravitational waves are connected with
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Roger Penrose. It does not seem to be generally recognized that the basic
idea appeared six years before the well-known paper by Khan and Penrose
[233] in which the metric describing the general spacetime representing a
collision of two parallel-polarized impulsive gravitational waves was obtained.
Having demonstrated the surprising fact that general relativistic plane wave
spacetimes admit no Cauchy hypersurface due to the focusing effect the waves
exert on null cones, Penrose [215] (in footnote 12) remarks: “This fact has
relevance to the question of two colliding weak plane sandwich waves. Each
wave warps the other until singularities in the wave fronts ultimately appear.
This, in fact, causes the spacetime to acquire genuine physical singularities in
this case. The warping also produces a scattering of each wave after collision
so that they cease to be sandwich waves when they separate (and they are
no longer plane – although they have a two-parameter symmetry group).”

The first detailed study of colliding plane waves, independently of Khan
and Penrose, was also undertaken by Szekeres (see [234,235]). He formulated
the problem as a characteristic initial value problem for a system of hyper-
bolic equations in two variables (null coordinates) u, v with data specified on
the pair of null hypersurfaces u = 0, v = 0 intersecting in a spacelike 2-surface
(Fig. 10). In the particular case of spacetimes representing plane waves prop-
agating before the collision in a flat background, Szekeres has shown that
coordinates (of the “Rosen type”, as known from the case of one wave – see
Eq. (63)) exist in which the metric reads

ds2 = − e−Mdu dv +
+ e−U

[
eV coshWdx2 + e−V coshWdy2 − 2 sinhWdx dy

]
, (64)

where M , U , V and W are functions of u and v. Coordinates x and y are
aligned along the two commuting Killing vectors ∂/∂x and ∂/∂y, which are
assumed to exist in the whole spacetime representing the colliding waves (cf.
the note by Penrose above). In almost all recent work on colliding waves,
region IV in Fig. 10, where u < 0, v < 0, is assumed to be flat. The null lines
u = 0, v < 0 and v = 0, u < 0 are wavefronts, and in regions II (u < 0, v > 0)
and III (u > 0, v < 0) one has the standard plane wave metric corresponding
to two approaching plane waves from opposite directions. In region II, func-
tions M, U, V, W depend on v only, and in region III only on u. The waves
collide at the 2-surface u = v = 0, in region I they interact. The spacetime
here can be determined by the initial data posed on the v ≥ 0 portion of the
hypersurface u = 0 (which in Fig. 10 are “supplied” by the wave propagating
to the right) and by the data on the u ≥ 0 portion of the hypersurface v = 0
(given by the wave propagating to the left). Unfortunately, the integration of
such an initial value problem does not seem to be possible for general incom-
ing wave forms and polarizations. If, however, the approaching waves have
constant and aligned (parallel) polarizations, one may set the function W = 0
globally. The solution of the initial value problem then reduces to a one di-
mensional integral for the function V , and two quadratures for the function
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M . (The function exp(−U) must have the form f(u)+ g(v) as a consequence
of the field equations everywhere, and it can be determined easily from the
initial data.) Despite these simplifications it is very difficult to obtain exact
solutions in closed analytic form. Szekeres [235] found a solution (as he puts it
“more or less by trial and error”) which, as special cases, includes the solution
given by himself earlier [234] and the solution obtained independently and
simultaneously by Khan and Penrose [233]. Although Szekeres’ formulation
of a general solution for the problem of colliding parallel-polarized waves is
difficult to use for constructing other specific explicit examples, it has been
employed in a general analysis of the structure of the singularities produced
by the collision [236], which will be discussed in the following.

I

II III

IV

uv

u=1v=
1

v=
0 u=0

Fig. 10. The spacetime diagram indicating the collision of two plane-fronted gravi-
tational waves which come from regions II and III, collide in region I, and produce
a spacelike singularity. Region IV is flat.

It has also inspired an important, difficult piece of mathematical physics
which was developed at the beginning of the 1990s in the series of papers by
Hauser and Ernst [237]. Their new method of analyzing the initial value prob-
lem can be used also for the case when the polarization of the approaching
waves is not aligned. They formulated the initial value problem in terms of
the equivalent matrix Riemann–Hilbert problem in the complex plane. Their
techniques are related to those used by Neugebauer and Meinel to analyze and
construct the rotating disk solution as a boundary value problem (Sect. 6.3).
No analogous solution for colliding waves in the noncollinear case is available
at present, but investigations in this direction are still in progress. Most re-
cently, Hauser and Ernst prepared an extensive treatise [238] in which they
give a general description and detailed mathematical proofs of their study of
the solutions of the hyperbolic Ernst equation.

The approach of Khan and Penrose for obtaining exact solutions describ-
ing colliding plane waves starts in the region I where the waves interact: (i)
find a solution with two commuting spacelike Killing vectors ∂/∂x and ∂/∂y,
transform to null coordinates, and look back in time whether this solution
can be extended across the null hypersurface u = 0, v = 0 so that it describes
a plane wave propagating in the u-direction in region II and another plane
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wave propagating in the v-direction in region III ; (ii) satisfy boundary con-
ditions not only across boundaries between regions I and II, and regions I
and III, but also across the boundaries between II and IV, and III and IV in
such a manner that IV is flat. The original prescription of Khan and Penrose
for extending the solution from region I to regions II and III consists in the
substitutions uH(u) and vH(v) in place of u and v everywhere in the metric
coefficients; here H(u) = 1 for u ≥ 0, H = 0 for u < 0 is the usual Heaviside
function. We then get the metric as a function of v (respectively u) in region
II (respectively III) corresponding to the wave propagating to the right (re-
spectively to the left) in Fig. 10. Finally, it remains to investigate carefully
the structure of discontinuities and possible singularities on the null bound-
aries between these regions. In the original Khan and Penrose solutions the
Riemann tensor has a δ-function character on the boundaries between II and
IV, and III and IV; but inside regions II and III themselves the spacetime
is flat (the collision of impulsive plane waves). In the solution obtained by
Szekeres [235], regions II and III are not flat, and the Riemann tensor at the
boundaries between II (respectively III ) and IV is just discontinuous (the
collision of shock waves).

Nutku and Halil [239] constructed an exact solution describing the colli-
sion of two impulsive plane waves with non-aligned polarizations. In the limit
of collinear polarizations their solution reduces to the solution of Khan and
Penrose. All of these solutions reveal that the spacelike singularity always
develops in region I (given by u2 +v2 = 1 in Fig. 10) – in agreement with the
original suggestion of Penrose. Moreover, the singularity “propagates back-
ward” and so called fold singularities, analyzed in detail in 1984 by Matzner
and Tipler [240], appear also at v = 1 and u = 1 in regions II and III.
This new type of singularity provides evidence of how even relatively recent
studies of explicit exact solutions may reveal unexpected global features of
relativistic spacetimes.

The remarkable growth of interest in colliding plane waves owes much
to the systematic (and symptomatic) effort of S. Chandrasekhar who, since
1984, together with V. Ferrari, and with B. Xanthopoulos, published a num-
ber of papers on colliding plane vacuum gravitational waves [241,242], and
on gravitational waves coupled with electromagnetic waves, with null dust,
and with perfect fluid (see [212] for references). The basic strategy of their
approach follows that of Khan and Penrose: first a careful analysis of the pos-
sible solution is done in the interaction region I, and then one works backward
in time, extending the solutions to regions II, III and IV.

The main new input consists in carrying over the techniques known from
stationary, axisymmetric spacetimes with one timelike and one spacelike
Killing vector to the case of two spacelike Killing vectors, ∂/∂x, ∂/∂y, and
exploring new features.

Taking a simple linear solution of the Ernst equation, E = Pη + iQμ,
where P and Q are real constants which satisfy P 2 + Q2 = 1, and η, μ are
suitable time and space coordinates, Chandrasekhar and Ferrari [241] show
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that one arrives at the Nutku-Halil solution. In particular, if Q = 0, the Khan-
Penrose solution emerges. Since by starting from the same simplest form of
the Ernst function in the axisymmetric stationary case one arrives at the Kerr
solution (or at the Schwarzschild solution for the real Ernst function), we may
conclude that in region I the solutions of Khan and Penrose and of Nutku
and Halil are, for spacetimes with two spacelike Killing vectors, the analogues
of the Schwarzschild and Kerr solutions. This mathematical analogy can be
generalized to colliding electromagnetic and gravitational waves within the
Einstein–Maxwell theory – Chandrasekhar and Xanthopoulos [243] found the
analogue of the charged Kerr–Newman solution. Such a generalization is also
of interest from a conceptual viewpoint: the δ-function singularity in the Weyl
tensor of an impulsive gravitational wave might imply a similar singularity in
the Maxwell stress tensor, which would seem to suggest that the field itself
would contain “square roots of the δ-function”.

In the most important paper [242] of the series, Chandrasekhar and Xan-
thopoulos, starting from the simplest linear solution for the Ernst conjugate
function E+ = Pη + iQμ, P 2 + Q2 = 1, obtained a new exact solution for
colliding plane impulsive gravitational waves accompanied by shock waves.
This solution results in the development of a nonsingular Killing–Cauchy
horizon instead of a spacelike curvature singularity. The metric can be ana-
lytically extended across this horizon to produce a maximal spacetime which
contains timelike singularities. (The spacelike singularity in region I in Fig.
10 is changed into the horizon, to the future of which timelike singularities
occur.) In the region of interaction of the colliding waves, the spacetime is
isometric to the spacetime in a region interior to the ergosphere.

Many new interesting solutions were discovered by using the Khan and
Penrose approach. In addition, inverse scattering (soliton) methods and other
tools from the solution generation techniques were applied. They are reviewed
in detail in [65,212,244].

Although very attractive mathematical methods are contained in these
works, one feels that physical interpretation has receded into the background
– as seemed to be the case when the new solution generating techniques were
exploited in all possible directions for stationary axisymmetric spacetimes. It
is therefore encouraging that a more physical and original approach to the
problem has been initiated by Yurtsever. In a couple of papers he discusses
Killing–Cauchy horizons [245] and the structure of the singularities produced
by colliding plane waves [236]. Similar to the Cauchy horizons in black hole
physics, one finds that the Killing–Cauchy horizons are unstable. We thus
expect that the horizon will be converted to a spacelike singularity. By using
the approach of Szekeres described at the beginning of this section, it is pos-
sible to relate the asymptotic form of the metric near the singularity – which
approaches an inhomogeneous Kasner solution (see Sect. 12.1) – to the initial
data given along the wavefronts of the incoming waves. For specific choices
of initial data the singularity degenerates into a coordinate singularity and a
Killing–Cauchy horizon arises. However, Yurtsever’s analysis [236] shows that
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such horizons are unstable (within full nonlinear theory) against small but
generic perturbations of the initial data. These results are stronger than those
on the instability of the inner horizons of the Reissner–Nordström or Kerr
black holes. In particular, Yurtsever constructs an interesting (though un-
stable) solution which, when analytically extended across its Killing–Cauchy
horizon, represents a Schwarzschild black hole created out of the collision be-
tween two plane sandwich waves propagating in a cylindrical universe [236].

Yurtsever also introduced “almost plane wave spacetimes” and analyzed
collisions of almost plane waves [246]. These waves have a finite but very
large transverse sizes. Some general results can be proved (for example, that
almost plane waves cannot have a sandwich character, but always leave tails
behind), and an order-of-magnitude analysis can be used in the discussion of
the outcome of the collision of two almost plane waves; i.e. whether they will
focus to a finite minimum size and then disperse, or whether a black hole
will be created. Although in the case of almost plane waves one can hardly
hope to find an exact spacetime in an explicit form, this is a field which was
inspired by exact explicit solutions, and may play a significant role in other
parts of general relativity.

9 Cylindrical Waves

In 1913, before the final formulation of general relativity, Einstein remarked
in a discussion with Max Born that, in the weak-field limit, gravitational
waves exist and propagate with the velocity of light (Poincaré pioneered the
idea of gravitational waves propagating with the velocity of light in 1905 –
see [15]). Yet, in 1936 Einstein wrote to Born [247]: “... gravitational waves
do not exist, though they had been assumed a certainty to the first approxi-
mation. This shows the nonlinear general relativistic field equations can tell
us more, or, rather, limit us more than we have believed up to now. If only
it were not so damnably difficult to find rigorous solutions”. However, after
finding a mistake in his argumentation (with the help of H. Robertson) and
discovering with Nathan Rosen cylindrical gravitational waves [248] as the
first exact radiative solutions to his vacuum field equations, Einstein changed
his mind. In fact, cylindrical waves were found more than 10 years before Ein-
stein and Rosen by Guido Beck in Vienna [249]. Beck was mainly interested
in time-independent axisymmetric Weyl fields, but he realized that through
a complex transformation of coordinates (z → it, t → iz) one obtains cylin-
drically symmetric time-dependent fields which represent cylindrical gravi-
tational waves, and wrote down equations (71) and (72) below. The work
of Einstein and Rosen is devoted explicitly to gravitational waves. It investi-
gates conditions for the existence of standing and progressive waves, and even
notices that the waves carry away energy from the mass located at the axis
of symmetry. We shall thus not modify the tradition and will call this type
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of waves Einstein–Rosen waves (which some readers may wish to shorten to
EROS-waves).

This type of waves, symmetric with respect to the transformation z → −z
(z – the axis of symmetry), contains one degree of freedom of the radiation
field and corresponds to a fixed state of polarization. The metric can be
written in the form

ds2 = e2(γ−ψ)(−dt2 + dρ2) + e2ψdz2 + ρ2e−2ψdϕ2, (65)

where ρ and t are invariants (“Weyl-type canonical coordinates”), and ψ =
ψ(t, ρ), γ = γ(t, ρ). The Killing vectors ∂/∂ϕ and ∂/∂z are both spacelike
and hypersurface orthogonal.

The metric containing a second degree of freedom was discovered by
Jürgen Ehlers (working in the group of Pascual Jordan), who used a trick
similar to Beck’s on the generalized (stationary) Weyl metrics, and indepen-
dently by Kompaneets (see the discussion in [250]). In the literature (e.g.
[251,252]) one refers to the Jordan-Ehlers-Kompaneets form of the metric:

ds2 = e2(γ−ψ) (
−dt2 + dρ2) + e2ψ (dz + ωdϕ)2 + ρ2e−2ψdϕ2. (66)

Here, the additional function ω(t, ρ) represents the second polarization.
Despite the fact that cylindrically symmetric waves cannot describe ex-

actly the radiation from bounded sources, both the Einstein–Rosen waves and
their generalization (66) have played an important role in clarifying a num-
ber of complicated issues, such as the energy loss due to gravitational waves
[253], the interaction of waves with cosmic strings [254,255], the asymptotic
structure of radiative spacetimes [250], the dispersion of waves [256], testing
the quasilocal mass-energy [257], testing codes in numerical relativity [251],
investigation of the cosmic censorship [258], and quantum gravity in a simpli-
fied but field theoretically interesting context of midisuperspaces [259–261].

In the following we shall discuss in some detail the asymptotic structure
and midisuperspace quantization since in these two issues cylindrical waves
have played the pioneering role. Some other applications of cylindrical waves
will be briefly mentioned at the end of the section.

9.1 Cylindrical Waves and the Asymptotic Structure
of 3-Dimensional General Relativity

In recent work with Ashtekar and Schmidt [262,263], which started thanks
to the hospitality of Jürgen Ehlers’ group, we considered gravitational waves
with a space-translation Killing field (“generalized Einstein–Rosen waves”).
In (2+1)-dimensional framework the Einstein–Rosen subclass forms a sim-
ple instructive example of explicitly given spacetimes which admit a smooth
global null (and timelike) infinity even for strong initial data. Because of the
symmetry, the 4-dimensional Einstein vacuum equations are equivalent to
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the 3-dimensional Einstein equations with certain matter sources. This re-
sult has roots in the classical paper by Jordan, Ehlers and Kundt [57] which
includes “reduction formulas” for the calculation of the Riemann tensor of
spaces which admit an Abelian isometry group.

Vacuum spacetimes which admit a spacelike, hypersurface orthogonal
Killing vector ∂/∂z can be described conveniently in coordinates adapted
to the symmetry:

ds2 = V 2(x)dz2 + ḡab(x)dxadxb, a, b, . . . = 0, 1, 2, (67)

where x ≡ xa and ḡab is a metric with Lorentz signature. The field equations
can be simplified if one uses a metric in the 3-space which is rescaled by the
norm of the Killing vector, and writes the norm of the Killing vector as an
exponential. Then (67) becomes

ds2 = e2ψ(x)dz2 + e−2ψ(x)gab(x)dxadxb, (68)

and the field equations,

Rab − 2∇aψ∇bψ = 0, gab∇a∇bψ = 0, (69)

where ∇ denotes the derivative with respect to the metric gab, can be rein-
terpreted as Einstein’s equations in 3 dimensions with a scalar field Φ =

√
2ψ

as source. Thus, 4-dimensional vacuum gravity is equivalent to 3-dimensional
gravity coupled to a scalar field. In 3 dimensions, there is no gravitational
radiation. Hence, the local degrees of freedom are all contained in the scalar
field. One therefore expects that Cauchy data for the scalar field will suffice to
determine the solution. For data which fall off appropriately, we thus expect
the 3-dimensional Lorentzian geometry to be asymptotically flat in the sense
of Penrose [27,264], i.e. that there should exist a 2-dimensional boundary
representing null infinity.

In general cases, this is analyzed in [262]. Here we shall restrict ourselves
to the Einstein–Rosen waves by assuming that there is a further spacelike,
hypersurface orthogonal Killing vector ∂/∂ϕ which commutes with ∂/∂z.
Then, as is well known, the equations simplify drastically. The 3-metric is
given by

dσ2 = gabdx
adxb = e2γ(−dt2 + dρ2) + ρ2dϕ2, (70)

the field equations (69) become

γ′ = ρ(ψ̇2 + ψ′2), γ̇ = 2ρψ̇ψ′, (71)

and
−ψ̈ + ψ′′ + ρ−1ψ′ = 0, (72)

where the dot and the prime denote derivatives with respect to t and ρ
respectively. The last equation is the wave equation for the non-flat 3-metric
(70) as well as for the flat metric obtained by setting γ = 0.
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Thus, we can first solve the axisymmetric wave equation (72) for ψ on
Minkowski space and then solve (71) for γ – the only unknown metric coeffi-
cient – by quadratures. The “method of descent” from the Kirchhoff formula
in 4 dimensions gives the representation of the solution of the wave equation in
3 dimensions in terms of Cauchy data Ψ0 = ψ(t = 0, x, y), Ψ1 = ψ,t(t = 0, x, y)
(see [262]). We assume that the Cauchy data are axially symmetric and of
compact support.

Let us look at the behaviour of the solution at future null infinity J +.
Let ρ, ϕ be polar coordinates in the plane, and introduce the retarded time
coordinate u = t−ρ to explore the fall-off along constant u null hypersurfaces.
For large ρ, the function ψ at u = constant admits a power series expansion
in ρ−1:

ψ(u, ρ) =
f0(u)√

ρ
+

1√
ρ

∞∑
k=1

fk(u)
ρk

. (73)

The coefficients in this expansion are determined by integrals over the Cauchy
data. At u � ρ0, ρ0 being the radius of the disk in the initial Cauchy surface
in which the data are non-zero, we obtain

f0(u) =
k0

u
3
2

+
k1

u
1
2

+ . . . , (74)

where k0, k1 are constants which are determined by the data. If the solution
happens to be time-symmetric, so that Ψ1 vanishes, we find f0 ∼ u− 3

2 for
large u. Similarly, we can also study the behaviour of the solution near the
timelike infinity i+ of 3-dimensional Minkowski space by setting t = U + κρ,
κ > 1, and investigating ψ for ρ → ∞ with U and κ fixed. We refer to [262]
for details.

In Bondi-type coordinates (u = t− ρ, ρ, ϕ), equation (70) yields

dσ2 = e2γ(−du2 − 2dudρ) + ρ2dϕ2. (75)

The Einstein equations take the form

γ,u = 2ρ ψ,u(ψ,ρ − ψ,u), γ,ρ = ρ ψ2
,ρ, (76)

and the wave equation on ψ becomes

−2ψ,uρ + ψ,ρρ + ρ−1(ψ,ρ − ψ,u) = 0. (77)

The asymptotic form of ψ(t, ρ) is given by the expansion (73). Since we can
differentiate (73) term by term, the field equations (76) and (77) imply

γ,u = −2[ḟ0(u)]2 +
∞∑

k=1

gk(u)
ρk

, (78)

γ,ρ =
∞∑

k=0

hk(u)
ρk+2 , (79)
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where the functions fk, hk are products of the functions f0, fk, ḟ0, ḟk. Inte-
grating (79) and fixing the arbitrary function of u in the result using (78),
we obtain

γ = γ0 − 2
∫ u

−∞

[
ḟ0(u)

]2
du−

∞∑
k=1

hk(u)
(k + 1)ρk+1 . (80)

Thus, γ also admits an expansion in ρ−1, where the coefficients depend
smoothly on u. It is now straightforward to show that the spacetime ad-
mits a smooth future null infinity, J +. Setting ρ̃ = ρ−1, ũ = u, ϕ̃ = ϕ and
rescaling gab by a conformal factor Ω = ρ̃, we obtain

dσ̃2 = Ω2dσ2 = e2γ̃(−ρ̃2dũ2 + 2dũdρ̃) + dϕ̃2, (81)

where γ̃(ũ, ρ̃) = γ(u, ρ̃−1). Because of (80), γ̃ has a smooth extension through
ρ̃ = 0. Therefore, g̃ab is smooth across the surface ρ̃ = 0. This surface is the
future null infinity, J +. Hence, the (2+1)-dimensional curved spacetime has
a smooth (2-dimensional) null infinity. Penrose’s picture works for arbitrarily
strong initial data Ψ0, Ψ1.

Using (81), we find that at J + we have:

γ(u,∞) = γ0 − 2
∫ u

−∞
ḟ2
0 du. (82)

Since one can make sure that γ = 0 at i+ [263], one finds the simple result
that

γ0 = 2
∫ +∞

−∞
ḟ2
0 du. (83)

At spatial infinity (t = constant, ρ →∞), the metric is given by

dσ2 = e2γ0(−dt2 + dρ2) + ρ2dϕ2. (84)

For a non-zero data, constant γ0 is positive, whence the metric has a “coni-
cal singularity” at spatial infinity. This conical singularity, present at spatial
infinity, is “radiated out” according to equation (82). The future timelike in-
finity, i+, is smooth. In (2+1)-dimensions, modulo some subtleties [262], equa-
tion (82) plays the role of the Bondi mass loss formula in (3+1)-dimensions,
relating the decrease of the total (Bondi) mass-energy at null infinity to the
flux of gravitational radiation. We can thus conclude that cylindrical waves
in (2+1)-dimensions give an explicit model of the Bondi–Penrose radiation
theory which admits smooth null and timelike infinity for arbitrarily strong
initial data. There is no other such model available. The general results on
the existence of J in 4 dimensions, mentioned at the end of Sect. 1.3, assume
weak data.

It is of interest to investigate cylindrical waves also in a (3+1)-dimensional
context. The asymptotic behaviour of these waves was discussed by Stachel
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[250] many years ago. However, his work deals solely with asymptotic direc-
tions, which are perpendicular to the axis of symmetry, i.e. to the ∂/∂z –
Killing vector. Detailed calculations show that, in contrast to the perpendic-
ular directions, where null infinity in the (3+1)-dimensional framework does
not exist, it does exist in other directions for data of compact support. If the
data are not time-symmetric, the fall-off is so slow that (local) null infinity
has a polyhomogeneous (logarithmic) character [180] – see [263] for details.

We have concentrated on the simplest case of Einstein–Rosen waves. They
served as a prototype for developing a general framework to analyze the
asymptotic structure of spacetime at null infinity in three spacetime dimen-
sions. This structure has a number of quite surprising features which do not
arise in the Bondi–Penrose description in four dimensions [262]. One of the
motivations for developing such a framework is to provide a natural point
of departure for constructing the stage for asymptotic quantization and the
S-matrix theory of an interesting midisuperspace in quantum gravity.

9.2 Cylindrical Waves and Quantum Gravity

As the editors of the Proceedings of the 117th WE Heraeus Seminar on
canonical gravity in 1993 [265], Jürgen Ehlers and Helmut Friedrich start
their Introduction realistically: “When asking a worker in the field about the
progress in quantum general relativity in the last decade, one shouldn’t be
surprised to hear: ‘We understand the problems better’. If it referred to a
lesser task, such an answer would sound ironic. But the search for quantum
gravity... has been going on now for more than half a century and in spite
of a number of ingenious proposals, a satisfactory theory is still lacking...”
Although I am following the subject from afar, I believe that one would
not be too wrong if one repeated the same words in 1999. However, apart
from general theoretical developments, many interesting quantum gravity
models have been studied, and exact solutions have played a basic role in
them. In particular, in the investigations of (spherical) gravitational collapse
and in quantum cosmology based typically on homogeneous cosmological
models (cf. Sect. 12.1), one starts from simple classical solutions – see e.g.
[266–268] for reviews and [269] for a bibliography up to 1990. A common
feature of such models is the reduction of infinitely many degrees of freedom
of the gravitational field to a finite number. In quantum field theory (such
as quantum electrodynamics) a typical object to be quantized is a wave with
an infinite number of degrees of freedom. The first radiative solutions of
the gravitational field equations which were subject to quantization were
the Einstein–Rosen waves. Kuchař [259] applied the methods of canonical
quantization of gravity to these waves, using the methods employed earlier in
the minisuperspace models, i.e. restricting himself only to geometries (fields)
preserving the symmetries.

The Einstein–Rosen cylindrical waves have an infinite number ∞1 of de-
grees of freedom contained in one polarization, one degree of freedom for each
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cylindrical surface drawn around the axis of symmetry. Moreover, the slicing
of spacetime by spacelike (cylindrically symmetric) hypersurfaces is not fixed
completely by the symmetry – an arbitrary cylindrically symmetric defor-
mation of a given slice leads again to an allowed slice. Such a deformation
represents an ∞1 “fingered time”. Hence, the resulting space of 3-geometries
on cylindrically symmetric slices is infinitely richer than the minisuperspaces
of quantum cosmology. The exact Einstein–Rosen waves thus inspired the
first construction of what Kuchař [259] called the “midisuperspace”.

Let us briefly look at the main steps in Kuchař’s procedure.21 The sym-
metry of the problem implies that the spatial metric has the form

g11 = eγ−Φ, g22 = R2e−Φ, g33 = eΦ, (85)

where γ, Φ, and R are functions of a single cylindrical coordinate x1 = r (x2 =
ϕ, x3 = z). Similarly the lapse function N = N(r) depends only on r, and the
shift vector has the only nonvanishing radial component N1 = N1(r), N2 =
N3 = 0. We have adopted here Kuchař’s notation. When we put R = r =
ρ, Φ = 2ψ, γ → 2γ, N = eγ−Φ, and N1 = 0, we recover the standard
Einstein–Rosen line element (65); however, in general the radial and time
coordinates t and r differ from the canonical Einstein–Rosen radial and time
coordinates in which the metric has the standard form (65). The symmetry
implies that the canonical momentum πik is diagonal and expressible by three
functions πγ , πR, πΦ of r; for example, π11 = πγe

Φ−γ , and similarly for the
other components. After the reduction to cylindrical symmetry, the action
functional assumes the canonical form

S = 2π
∫ ∞

−∞
dt

∫ ∞

0
dr(πγ γ̇ + πRṘ + πΦΦ̇−NH−N1H1) , (86)

in which γ,R, Φ are the canonical coordinates and πγ , πR, πΦ the conjugate
momenta (the integration over z has been limited by z = z0 and z = z0 + 1).
The superhamiltonian H and supermomentum H1 are rather complicated
functions of the canonical variables:

H = e
1
2 (Φ−γ) (

−πγπR + 1
2R

−1π2
Φ + 2R′′ − γ′R′ + 1

2RΦ′2) , (87)
H1 = −2π′

γ + γ′πγ + R′πR + Φ′πΦ. (88)

The most important step now is the replacement of the old canonical
variables γ, πγ , R, πR by a new canonical set T,ΠT , R,ΠR through a suitable
canonical transformation. We shall write here only one of its components (see
[259,270] for the complete transformation):

T (r) = T (∞) +
∫ r

∞
[−πγ(r)] dr. (89)

21 For the basic concepts and ideas of canonical gravity, we refer to e.g. [18,19] and
especially to Kuchař’s review [270], where the canonical quantization of cylindri-
cal waves is also analyzed.
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By integrating the Hamilton equations following from the action (86), rewrit-
ten in the new canonical coordinates, one finds that T and R are the Einstein–
Rosen privileged time and radial coordinates, i.e. those appearing in the
canonical form (65) of the Einstein–Rosen metric (with T = t, R = ρ). Ac-
cording to (89), the Einstein–Rosen time can be reconstructed, in a non-local
way, from the momentum πγ , which characterizes the extrinsic curvature of
a given hypersurface. In this way, the concept of the “extrinsic time repre-
sentation” entered canonical gravity with cylindrical gravitational waves.

In terms of the new canonical variables, the superhamiltonian and super-
momentum become

H = e
1
2 (Φ−γ) (

R′ΠT + T ′ΠR + 1
2

(
R−1π2

Φ + RΦ′2)) , (90)
H1 = T ′ΠT + R′ΠR + Φ′πΦ. (91)

Since H and H1 are linear in ΠT and ΠR, the classical constraints H =
0,H1 = 0 can immediately be resolved with respect to these momenta, con-
jugate to the “embedding” canonical variables T (r) and R(r):

−ΠT =
(
R′2 − T ′2)−1 [ 1

2 (R−1π2
Φ + RΦ′2)R′ − Φ′πΦT ′] = 0, (92)

and similarly for ΠR. It is easy to see [259,270] that the constraints have the
same form as the constraints for a massless scalar field Φ propagating on a flat
background foliated by arbitrary spacelike hypersurfaces T = T (r), R = R(r).
The canonical variables Φ, πΦ represent the true degrees of freedom, and
the remaining canonical variables play the role of spacelike embeddings of a
Cauchy hypersurface into spacetime.

After turning the canonical momenta ΠT , ΠR, πΦ, into variational deriva-
tives, e.g. ΠT = −iδ/δT (r), one can impose the classical constraints H =
0,H1 = 0 as restrictions on the state functional Ψ(T,R, Φ): HΨ = 0, H1Ψ =
0. In particular, the Wheeler-DeWitt equation HΨ = 0 in the extrinsic time
representation assumes the form of a many-fingered time counterpart of an or-
dinary Schrödinger equation. This reduces to the ordinary Schrödinger equa-
tion for a single massless scalar field in Minkowski space if we adopt the
standard foliation T = constant (see [259,270] for details).

The described procedure, first realized in the case of the Einstein–Rosen
waves, has opened a new route in canonical and quantum gravity. In contrast
to the Arnowitt-Deser-Misner approach, in which the gravitational dynamics
is described relative to a fixed foliation of spacetime, in this new approach
(called “bubble time” dynamics of the gravitational field or the “internal time
formalism” [271]) one tries to extract the many-fingered time (i.e. embeddings
of Cauchy hypersurfaces) from the gravitational phase space, but does not fix
the foliation in the “target manifold” by coordinate conditions. However, the
definition of the target manifold by a gauge (coordinate) condition is needed.

This new approach has been so far successfully applied to a few other
models (based on exact solutions) with infinite degrees of freedom, for ex-
ample, plane gravitational waves, bosonic string, and as late as 1994, to
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spherically symmetric vacuum gravitational fields [272]. The internal time
formalism for spacetimes with two Killing vectors was developed in [273]
(therein references to previous works can also be found). Recently, canonical
transformation techniques have been applied to Hamiltonian spacetime dy-
namics with a thin spherical null-dust shell [274]. One would like to construct
a midisuperspace model of spherical gravitational collapse, or more specifi-
cally, a model for Hawking radiation with backreaction. The extensive past
work on Hamiltonian approaches to spherically symmetric geometries (see
[274] for more than 40 references in this context) have not yet led to con-
vincing insights. The very basic question of existence of the “internal time”
formalism in a general situation has been most recently addressed by Háj́ıček
[49]; the existence has been proven, and shown to be related to the choice of
gauge.

9.3 Cylindrical Waves: a Miscellany

Chandrasekhar [247] constructed a formalism for cylindrical waves with two
polarizations (cf. the metric (66)), similar to that used for the discussion of
the collision of plane-fronted waves (Sect. 8.3). He obtained the “cylindrical”
Ernst equation and corroborated (following the suggestion of O. Reula) the
physical meaning of Thorne’s C-energy [253] – the expression for energy sug-
gested for cylindrical fields – by defining a Hamiltonian density corresponding
to the Lagrangian density from which the Ernst equation can be derived. A
brief summary of older work on the mass loss of a cylindrical source radi-
ating out cylindrical waves and its relation to the C-energy is given in [65].
It should be pointed out, however, that although C-energy is a useful quan-
tity, it was constructed by exploiting the local field equations, without direct
reference to asymptotics. The physical energy (per unit z length) at both
spatial and null infinity, which is the generator of the time translation, is in
fact a non-polynomial function of the C-energy. In the weak field limit the
two agree, but in strong fields they are quite different [262].

In [256], an exact solution was constructed with which one can study the
dispersion of waves: a cylindrical wave packet, which though initially impul-
sive, after reflection at the axis disperses, and develops shock wave fronts
when the original wave meets the waves that are still ingoing. Cylindrical
waves have been also analyzed in the context of phase shifts occurring in
gravitational soliton interactions (see [275] and references therein).

An exact explicit solution for cylindrical waves with two degrees of polar-
ization has been obtained [252] from the Kerr solution after transforming the
metric into “cylindrical” coordinates and using the substitution t → iz̃, z →
it̃, a → iã. Both this solution and the well-known Weber-Wheeler-Bonnor
pulse [65] have been employed as test beds in numerical relativity [276], in
particular in the approach which combines a Cauchy code for determining
the dynamics of the central source with a characteristic code for determining
the behaviour of radiation [251].
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In a number of works cylindrical waves have been considered in interaction
with cosmic strings [254,255]. The strings are usually modelled as infinitely
thin conical singularities. Recently Colombeau’s theory of generalized func-
tions was used to calculate the distributional curvature at the axis for a
time-dependent cosmic string [277].

A somewhat surprising result concerning cosmic strings and radiation the-
ory should also be noted: although an infinite, static cylindrically symmet-
ric string does not, of course, radiate, it generates a nonvanishing (though
“non-radiative”) contribution to the Bondi news function [278,279]. Recently,
the asymptotics at null infinity of cylindrical waves with both polarizations
(and, in general, an infinite cosmic string along the axis) has been analyzed
in the context of axisymmetric electrovacuum spacetimes with a translational
Killing vector at null infinity [280].

Finally, the cylindrically symmetric electrovacuum spacetimes with both
polarizations, satisfying certain completeness and asymptotic flatness condi-
tions in spacelike directions have been shown rigorously to imply that strong
cosmic censorship holds [258]. This means that for generic (smooth) initial
data the maximal globally hyperbolic development of the data is inextendible
(no Cauchy horizons as for example, those discussed in Sect. 3.1 for the
Reissner–Nordström spacetime arise). This global existence result is non-
trivial since with two polarizations and electromagnetic field present, all field
equations are nonlinear.

10 On the Robinson–Trautman Solutions

Robinson–Trautman metrics are the general radiative vacuum solutions which
admit a geodesic, shearfree and twistfree null congruence of diverging rays.
In the standard coordinates the metric has the form [281]

ds2 = 2r2P−2dζdζ̄ − 2du dr − [Δ lnP − 2r(lnP ),u − 2mr−1] du2, (93)

where ζ is a complex spatial (stereographic) coordinate (essentially θ and
ϕ), r is the affine parameter along the rays, u is a retarded time, m is a
function of u (which can be in some cases interpreted as the mass of the
system), Δ = 2P 2(∂2/∂ζ∂ζ̄), and P = P (u, ζ, ζ̄) satisfies the fourth-order
Robinson–Trautman equation

ΔΔ(lnP ) + 12 m (lnP ),u − 4m,u = 0. (94)

The best candidates for describing radiation from isolated sources are the
Robinson–Trautman metrics of type II with the 2-surfaces S2 given by u, r =
constant and having spherical topology. The Gaussian curvature of S2 can
be expressed as K = Δ lnP . If K = constant, we obtain the Schwarzschild
solution with mass equal to K− 3

2 .
These spacetimes have attracted increased attention in the last decade –

most recently in the work by Chruściel, and Chruściel and Singleton [282]. In
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these studies the Robinson–Trautman spacetimes have been shown to ex-
ist globally for all positive “times”, and to converge asymptotically to a
Schwarzschild metric. Interestingly, the extension of these spacetimes across
the “Schwarzschild-like” event horizon can only be made with a finite degree
of smoothness. All these rigorous studies are based on the derivation and
analysis of an asymptotic expansion describing the long-time behaviour of
the solutions of the nonlinear parabolic equation (94).
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Fig. 11. The evolution of the cosmological Robinson–Trautman solutions with a
positive cosmological constant. A black hole with the horizon H+ is formed; at
future infinity J + the spacetime approaches a de Sitter spacetime exponentially
fast, in accordance with the cosmic no-hair conjecture.

In our recent work [163,283] we studied Robinson–Trautman radiative
spacetimes with a positive cosmological constant Λ. The results proving the
global existence and convergence of the solutions of the Robinson–Trautman
equation (94) can be taken over from the previous studies since Λ does not
explicitly enter this equation. We have shown that, starting with arbitrary,
smooth initial data at u = u0 (see Fig. 11), these cosmological Robinson–
Trautman solutions converge exponentially fast to a Schwarzschild–de Sitter
solution at large retarded times (u → ∞). The interior of a Schwarzschild–
de Sitter black hole can be joined to an “external” cosmological Robinson–
Trautman spacetime across the horizon H+ with a higher degree of smooth-
ness than in the corresponding case with Λ = 0. In particular, in the extreme
case with 9Λm2 = 1, in which the black hole and cosmological horizons coin-
cide, the Robinson–Trautman spacetimes can be extended smoothly through
H+ to the extreme Schwarzschild–de Sitter spacetime with the same values
of Λ and m. However, such an extension is not analytic (and not unique).

We have also demonstrated that the cosmological Robinson–Trautman
solutions represent explicit models exhibiting the cosmic no-hair conjecture:
a geodesic observer outside of the black hole horizon will see, that inside
his past light cone, these spacetimes approach the de Sitter spacetime ex-
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ponentially fast as he approaches the future (spacelike) infinity J +. For a
freely falling observer the observable universe thus becomes quite bald. This
is what the cosmic no-hair conjecture claims. As far as we are aware, these
models represent the only exact analytic demonstration of the cosmic no-hair
conjecture under the presence of gravitational waves. They also appear to be
the only exact examples of black hole formation in nonspherical spacetimes
which are not asymptotically flat. Hopefully, these models may serve as tests
of various approximation methods, and as test beds in numerical studies of
more realistic situations in cosmology.

11 The Boost–Rotation Symmetric
Radiative Spacetimes

In this section we would like to describe briefly the only explicit solutions
available today which are radiative and represent the fields of finite sources.
Needless to say, we cannot hope to find explicit analytic solutions of the
Einstein equations without imposing a symmetry. A natural first assumption
is axial symmetry, i.e. the existence of a spacelike rotational Killing vector
∂/∂ϕ. However, it appears hopeless to search for a radiative solution with
only one symmetry. We are now not interested in colliding plane waves since
these do not represent finite sources; we wish our spacetime to be as “asymp-
totically flat as possible”. The unique role of the boost-rotation symmetric
spacetimes is exhibited by a theorem, formulated precisely and proved for
the vacuum case with hypersurface orthogonal Killing vectors in [284], and
generalized to electrovacuum spacetimes with Killing vectors which need not
be hypersurface orthogonal in [279] (see also references therein). This the-
orem roughly states that in axially symmetric, locally asymptotically flat
spacetimes (in the sense that a null infinity satisfying Penrose’s requirements
exists, but it need not necessarily exist globally), the only additional symme-
try that does not exclude radiation is the boost symmetry.

In Minkowski spacetime the boost Killing vector has the form

ζboost = z
∂

∂t
+ t

∂

∂z
, (95)

so that orbits of symmetry to which the Killing vector is tangent are hy-
perbolas z2 − t2 = B = constant, x, y = constant. Orbits with B > 0 are
timelike; they can represent worldlines of uniformly accelerated particles in
special relativity. Imagine, for example, a charged particle, axially symmet-
ric about the z-axis, moving with a uniform acceleration along this axis.
The electromagnetic field produced by such a source will have boost-rotation
symmetry.

Figure 12 shows two particles uniformly accelerated in opposite direc-
tions along the z-axis. In the space diagram (left), the “string” connecting



The Role of Exact Solutions 89

the particles is also indicated. In the spacetime diagram, the particles’ world-
lines are shown in bold. Thinner hyperbolas represent the orbits of the boost
Killing vector (95) in the regions t2 > z2 where it is spacelike. In Fig. 13 the
corresponding compactified diagram indicates that null infinity cannot be
smooth everywhere since it contains four singular points in which particles’
worldlines “start” and “end”. Notice that in electromagnetism the presence
of two particles, one moving along z > 0, the other along z < 0, makes the
field symmetric also with respect to inversion z → −z. The electromagnetic
field can be shown to be analytic everywhere, except for the places where the
particles occur. These two particles move independently of each other, since
their worldlines are divided by two null hypersurfaces z = t, z = −t. This is
analogous to the boost-rotation symmetric spacetimes in general relativity
that we are now going to discuss.

Specific examples of solutions representing “uniformly accelerated parti-
cles” have been analyzed for 35 years, starting with the first solutions of this
type obtained by Bonnor and Swaminarayan [285], and Israel and Khan [286].
In a curved spacetime the “uniform acceleration” is understood with respect
to a fictitious Minkowski background, and the “particles” mean singularities
or black holes. For a more extensive description of the history of these spe-
cific solutions discovered before 1985, see [287]. From a unified point of view,
boost-rotation symmetric spacetimes (with hypersurface orthogonal Killing
vectors) were defined and treated geometrically in [288]. We refer to this de-
tailed work for rigorous definitions and theorems. Here we shall only sketch
some of the general properties and some applications of these spacetimes.

The metric of a general boost-rotation symmetric spacetime in “Cartesian-
type” coordinates {t, x, y, z} reads:

ds2 =
1

x2 + y2

[
(eλx2 + e−μy2)dx2 + 2xy(eλ − e−μ)dxdy

]
+

+
1

x2 + y2 (eλy2 + e−μx2)dy2 +
1

z2 − t2
(eλz2 − eμt2)dz2 −

− 1
z2 − t2

[
2zt(eλ − eμ)dzdt + (eμz2 − eλt2)dt2

]
, (96)

where μ and λ are functions of ρ2 = x2 + y2 and z2 − t2. As a consequence
of the vacuum Einstein equations, the function μ must satisfy an equation
of the form which is identical to the flat-space wave equation; and function
λ is determined in terms of μ by quadrature. Now it can easily be seen that
the metric (96) admits axial and boost Killing vectors which have exactly the
same form as in Minkowski space, i.e. the axial Killing vector ∂/∂ϕ and the
boost Killing vector (95). In fact, the whole structure of group orbits in boost-
rotation symmetric curved spacetimes outside the sources (or singularities)
is the same as the structure of the orbits generated by the axial and boost
Killing vectors in Minkowski space. In particular, the boost Killing vector
(95) is timelike in the region z2 > t2. The invariance of a metric (or of
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any other field) in a time-direction (determined in a coordinate-free manner
by a timelike Killing vector) means stationarity, and of course, we could
hardly expect to find radiative properties there. Intuitively, the existence of
a timelike Killing vector in the region z2 > t2 is understandable because
there (generalized) uniformly accelerated reference frames can be introduced
in which sources are at rest, and the fields are time independent.

+

+
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Fig. 12. Two particles uniformly accelerated in opposite directions. The orbits of
the boost Killing vector (thinner hyperbolas) are spacelike in the region t2 > z2.

However, in the other “half” of the spacetime, t2 > z2, the boost Killing
vector (95) is spacelike (see the lines representing orbits of the boost Killing
vector in Fig. 12). Hence in this region the metric (96) is nonstationary.
Here we expect to discover radiative properties. Indeed, it can be shown that
for t2 > z2 + ρ2 the metric (96) can locally be transformed into the metric
of Einstein–Rosen cylindrical waves. Although locally in the whole region
t2 > z2 the metric (96) can be transformed into a radiative metric, the global
properties of the boost-rotation symmetric solutions are quite different from
those of cylindrical waves. Again, we have to refer to the work [288] for a
detailed analysis. Let us only say that the boost-rotation symmetric solutions,
if properly defined – with appropriate boundary conditions on functions λ and
μ – always admit asymptotically flat null infinity J at least locally. Starting
with arbitrary solutions λ and μ, and adding suitable constants to both λ and
μ (Einstein’s equations are then still satisfied), we can always guarantee that
even global J exists in the sense that it admits smooth spherical sections.
For the special type of solutions for λ and μ, complete J satisfies Penrose’s
requirements, except for four points in which the sources “start” and “end”
(cf. Fig. 13). In all cases one finds that the gravitational field in smooth
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regions of the null infinity is radiative [279,289]. In particular, the leading
term of the Riemann curvature tensor, proportional to r−1 (where r2 =
ρ2+z2), is nonvanishing and has the same algebraic structure as the Riemann
tensor of plane waves. This is fully analogous to the asymptotic properties
of radiative electromagnetic fields outside finite sources. Recently, general
forms of the news functions have been obtained for electrovacuum spacetimes
with boost-rotation symmetry and with Killing vectors which need not be
hypersurface orthogonal [279].
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Fig. 13. The Penrose compactified diagram of a boost-rotation symmetric space-
time. Null infinity can admit smooth sections.

It is well known that in general relativity the “causes” of motion are always
incorporated in the theory – in contrast to electrodynamics where they need
not even be describable by Maxwell’s theory. In a general case of the boost-
rotation symmetric solutions there exist nodal (conical) singularities of the
metric distributed along the z-axis which can be considered as “strings”, and
cause particles to accelerate. They reveal themselves also at J . However, the
distribution of nodes can always be arranged in such a manner that J admits
smooth regular sections as mentioned above.

In exceptional cases, when J is regular except for four points, either
the particles are “self-accelerating” due to their “inner” multipole structure,
which has to include a negative mass; or there are more particles distributed
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along z > 0 (and symmetrically along z < 0) with the signs and the magni-
tudes of their masses and accelerations chosen appropriately. (For the concept
of a negative mass in general relativity, and the first discussion of a “chas-
ing” pair of a positive and a negative mass particle, see classical papers by
Bondi, and Bonnor and Swaminarayan [285].) An infinite number of differ-
ent analytic solutions representing self-accelerating particles was constructed
explicitly [290]. Although a negative mass cannot be bought easily in the
shop (as Bondi liked to say), these solutions are the only exact solutions of
Einstein’s equations available today for which one can find such quantities
of physical interest as radiation patterns (angular distribution of gravita-
tional radiation), or total radiation powers [287]. From a mathematical point
of view, these solutions represent the only known spacetimes in which ar-
bitrarily strong (boost-rotation symmetric) initial data can be chosen on a
hyperboloidal hypersurface in the region t2 > z2, which will lead to a com-
plete smooth null infinity and a regular timelike future infinity. With these
specific examples one thus does not have to require weak-field initial data
as one has to in the work of Friedrich, and Christodoulou and Klainerman,
mentioned at the end of Sect. 1.3.

The boost-rotation symmetric radiative spacetimes can be used as test
beds for approximation methods or numerical relativity. Bičák, Reilly and
Winicour [291] found the explicit boost-rotation symmetric “initial null cone
solution”, which solves initial hypersurface and evolution equations in “ra-
diative” coordinates employed in the null cone version of numerical relativity.
This solution has been used for checking and improving numerical codes for
computing gravitational radiation from more realistic sources; a new solution
of this type has also been found [292]. Recently, the specific boost-rotation
symmetric spacetimes constructed in [290] were used as test beds in the stan-
dard version of numerical relativity based on spacelike hypersurfaces [293].

There exist “generalized” boost-rotation symmetric spacetimes which are
not asymptotically flat, but are of considerable physical interest. They de-
scribe accelerated particles in asymptotically “uniform” external fields. One
can construct such solutions from asymptotically flat boost-rotation symmet-
ric solutions for the pairs of accelerated particles by a limiting procedure, in
which one member of the pair is “removed” to infinity, and its mass param-
eter is simultaneously increased [294]. Since the resulting spacetimes are not
asymptotically flat, their radiative properties are not easy to analyze. Only
if the external field is weak will there exist regions in which the spacetimes
are approximately flat; and here their radiative properties might be investi-
gated. So far no systematic analysis of these spacetime has been carried out.
Nevertheless, they appear to offer the best rigorous examples of the motion
of relativistic objects. No nodal singularities or negative masses are necessary
to cause an acceleration.

As an eloquent example of such a spacetime consider a charged (Reissner–
Nordström) black hole with mass M and charge Q, immersed in an electric
field “uniform at infinity”, characterized by the field-strength parameter E.
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An exact solution of the Einstein–Maxwell equations exists which describes
this situation [131]. It goes over into an approximate solution obtained by
perturbing the charged black hole spacetime by a weak external electric field
which is uniform at infinity [295]. One of the results of the analysis of this
solution is very simple: a charged black hole in an electric field starts to
accelerate according to Newton’s second law, Ma = QE, where all the quan-
tities can be determined – and in principle measured – in an approximately
flat region of the spacetime from the asymptotic form of the metric. Recall
T. S. Eliot again: “There is only the fight to recover what has been lost /
And found and lost again and again.”

These types of generalized boost-rotation symmetric spacetimes (“gener-
alized C-metrics”) have been used by Hawking, Horowitz, Ross, and others
[296] in the context of quantum gravity – to describe production of black hole
pairs in strong background fields.

Recently, we have studied the spinning C-metric discovered by Plebański
and Demiański [297]. Transformations can be found which bring this metric
into the canonical form of spacetimes with boost-rotation symmetry [298].
The metric represents two uniformly accelerated, rotating black holes, either
connected by conical singularity, or with conical singularities extending from
each of them to infinity. The spacetime is radiative. No other spacetime of
this type, with two Killing vectors which are not hypersurface orthogonal, is
available in an explicit form.

12 The Cosmological Models

In light of Karl Popper’s belief that “all science is cosmology”, it appears
unnecessary to justify the choice of solutions for this last section. As in the
whole article, these will be primarily vacuum solutions. On the other hand,
in light of the light coming from about 1011 galaxies, each with about 1011

stars, it may seem weird to consider vacuum models of the Universe. Indeed,
it has become part of the present-day culture that spatially homogeneous
and isotropic, expanding Friedmann-Robertson-Walker (FRW) models, filled
with uniformly distributed matter, correspond well to basic observational
data. In order to achieve a more precise correspondence, it appears sufficient
to consider just perturbations of these “standard cosmological models”. To
explain some “improbable” features of these models such as their isotropy
and homogeneity, one finds an escape in inflationary scenarios. These views
of a “practical cosmologist” are, for example, embodied in one of the most
comprehensive recent treatise on physical cosmology by Peebles [28].

Theoretical (or mathematical) cosmologists, however, point out that more
general cosmological models exist which differ significantly from a FRW
model at early times, approach the FRW model very closely for a certain
epoch, and may diverge from it again in the future. Clearly, the FRW uni-
verses represent only a very special class of viable cosmological models,
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though the simplest and most suitable for interpretations of “fuzzy” cos-
mological observational data.

Simple exact solutions play a significant role in the evolution of more
general models, either as asymptotic or intermediate states. By an “interme-
diate state” one means the situation when the universe enters and remains
in a small neighbourhood of a saddle equilibrium point. A simple example
is the Lemâıtre matter-filled, homogeneous and isotropic model with a non-
vanishing cosmological constant (see e.g. [28]), which expands from a dense
state (the big bang, or “primeval atom” in Lemâıtre’s 1927 terminology),
passes through a quasistatic epoch in which all parameters are close to those
of the static Einstein universe (cf. Sect. 1.2), and then the universe expands
again. An “asymptotic state” means close either to an initial big bang (or
possibly a final big crunch) singularity, or the situation at late times in for-
ever expanding universes. It is easy to see that at late times in indefinitely
expanding universes the matter density decreases, and vacuum solutions may
become important. However, as we shall discuss below, vacuum models play
an important role also close to a singularity, when the matter terms in Ein-
stein’s equations are negligible compared to the “velocity terms” (given by
the rate of change of scale factors) or to the curvature terms (characteriz-
ing the curvature of spacelike hypersurfaces). In particular, the pioneering
(and still controversial) work started at the end of the 1950s by Lifshitz and
Khalatnikov, and developed later on by Belinsky, Khalatnikov and Lifshitz,
has shown that the fact that the presence of matter does not influence the
qualitative behaviour of a cosmological model near a singularity has a very
general significance (see [299] and [300] for the main original references, and
[139] for a brief review).

In gaining an intuition in the analysis of general cosmological singulari-
ties, the class of spatially homogeneous anisotropic cosmological models have
played a crucial role. These so called Bianchi models admit a simply transi-
tive 3-dimensional homogeneity group. Among the Bianchi vacuum models
there are special exact explicit solutions, in particular the Kasner and the
Bianchi type II solutions, which exhibit some aspects of general cosmological
singularities. The Bianchi models have also had an impact on other issues in
general relativity and cosmology.

Much work, notably in recent years, has been devoted to the class of
both vacuum and matter-filled cosmological solutions which are homogeneous
only on 2-dimensional spacelike orbits. Thus they depend on time and on
one spatial variable, and can be used to study spatial inhomogeneities as
density fluctuations or gravitational waves. The vacuum cosmological models
with two spacelike Killing vectors, sometimes called the Gowdy models,22 are
22 In fact, by Gowdy models, one more often means only the cases with closed group

orbits, with two commuting spacelike othogonally-transitive Killing vectors (the
surface elements orthogonal to the group orbits are surface-forming).
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interpreted as gravitational waves in an expanding (or contracting) universe
with compact spatial sections. We shall discuss these two classes separately.

12.1 Spatially Homogeneous Cosmologies

The simplest solutions, the Minkowski, de Sitter, and anti de Sitter space-
times, which have also been used in cosmological contexts (cf. Sect. 1.3),
are 4-dimensionally homogeneous. As noted in Sect. 8.1, the vacuum plane
waves (see equations (51), (53), (61)) are also homogeneous spacetimes; and
since they can be suitably sliced by spacelike hypersurfaces with expand-
ing normal congruence, they can become asymptotic states in homogeneous
expanding cosmologies. There exist several important non-vacuum homoge-
neous spacetimes, for example, the Einstein static universe (cf. Sect. 1.2),
and Gödel’s stationary, rotating universe (see e.g. [61,301]), famous for the
first demonstration that Einstein’s equations with a physically permissible
matter source are compatible with the existence of closed timelike lines, i.e.
with the violation of causality.

Here we shall consider models in which the symmetry group does not make
spacetime a homogeneous space, but in which each event in spacetime is con-
tained in a spatial hypersurface that is homogeneous. The standard FRW
models represent a special case of such models (they admit, in addition, an
isotropy group SO(3) at each point). The general spatially homogeneous so-
lutions comprise of the Kantowski–Sachs universes and a much wider class
of Bianchi models. By definition, the Bianchi models admit a simply tran-
sitive 3-dimensional homogeneity group G3. There exist special “locally ro-
tationally symmetric” (LRS) Bianchi models which admit a 4-dimensional
isometry group G4 acting on homogeneous spacelike hypersurfaces, but these
groups have a simply transitive subgroup G3. In contrast to this, Kantowski–
Sachs spacetimes admit G4 (acting on homogeneous spacelike hypersurfaces)
which does not have any simply transitive subgroup G3; it contains a mul-
tiply transitive G3 acting on 2-dimensional surfaces of constant curvature,
G4 = IR × SO(3). A special case of the vacuum Kantowski–Sachs universe
is represented by the Schwarzschild metric inside the horizon (with t and r
interchanged). There has been a continuing interest in the Kantowski–Sachs
models since their discovery in 1966 [302], to which, as the authors acknowl-
edge, J. Ehlers contributed by his advice. Some of these models had already
appeared in the PhD thesis of Kip Thorne in 1965 (see also [303] for mag-
netic Kantowski–Sachs models). Here, however, we just refer the reader to
[304,305] for their classical description, to [306] for a canonical and quan-
tum treatment, and to [307] for the latest discussion of the Kantowski–Sachs
quantum cosmologies.

Although the 3-dimensional Lie groups which are simply transitive on
homogenous 3-spaces were classified by Bianchi in 1897, the importance of
Bianchi’s work for constructing vacuum cosmological models was only dis-
covered by Taub in 1951 [197], when the Taub space (cf. Sect. 7) was first
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given. It is less known that at approximately the same time, if not earlier,
the first explicit spatially homogeneous expanding and rotating cosmological
models with matter (of the Bianchi type IX) were constructed by Gödel,23

who first presented his results at the International Congress of Mathematics
held at Cambridge (Mass.) from August 30 till September 5, 1950.

An exposition of Bianchi models has been given in a number of places:
in the account on relativistic cosmology by Heckmann and Schücking [308]
(complementing the chapter on exact solutions by Ehlers and Kundt [53]),
in the monographs of Ryan and Shepley [304], and Zel’dovich and Novikov
[309], in several comprehensive surveys by MacCallum (see e.g. [305] and [310]
for his latest review containing a number of references), most recently, in the
book on the dynamical system approach in cosmology (in the Bianchi models
in particular) edited by Wainwright and Ellis [311]; and, first but not least, in
the classics of Landau and Lifshitz [139]. The Hamiltonian approach initiated
by Misner [312] in 1968, and used in, amongst other things, the construction
of various minisuperspace models in quantum gravity, has been reviewed by
Ryan [266]; for more recent accounts, see several contributions to Misner’s
Festschrift [313]. An interesting framework which unifies the Hamiltonian
approach to the solutions which admit homogeneous hypersurfaces either
spacelike (as Bianchi models) or timelike (as static spherical, or stationary
cylindrical models) was recently developed by Uggla, Jantzen and Rosquist
in [314] (with 115 references on many exact solutions). Herewith we shall only
briefly introduce the Bianchi models, note their special role in understanding
the character of an initial cosmological singularity, and mention some of the
most recent developments not covered by the reviews cited above.

The line element of the Bianchi models can be expressed in the form

ds2 = −dt2 + gab(t) ωa ωb, (97)

where the time-independent 1-forms ωa (= Ea
αdxα), a = 1, 2, 3, are dual to

time-independent24 spatial frame vectors Ea (often an arbitrary time-variable
t̃ is introduced by dt = N(t̃) dt̃, N being the usual lapse function). Both ωa

23 Gödel’s profound ideas and results in cosmology, and their influence on later
developments have been discussed in depth by G. Ellis in his lecture at the Gödel
’96 conference in Brno, Czech Republic, where Gödel was born in 1906 (78 years
before Gödel, Ernst Mach was born in a place which today belongs to Brno).
In the extended written version of Ellis’ talk [301] it is indicated that Gödel’s
work also initiated the investigation of Taub. This may well be true with Gödel’s
paper on the stationary rotating universe, but Taub’s paper on Bianchi models
was received by the Annals of Mathematics on May 15, 1959, i.e. before Gödel’s
lecture on expanding and rotating models at the Congress of Mathematics took
place.

24 The gravitational degrees of freedom are associated with the component (scalar)
functions gab(t) – the so called metric approach. Alternatively, in the orthonormal
frame approach, one chooses gab(t) = δab and describes the evolution by time-
dependent forms ωa. In still another approach one employs the automorphism
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and Ea are group-invariant, commuting with the three Killing fields which
generate the homogeneity group. They satisfy the relations

dωa = − 1
2
Ca

bc ωb ∧ ωc, (98)

[Ea,Eb] = Cc
abE

c, (99)

where d is the exterior derivative and Ca
bc are the structure constants of the

Lie algebra of the homogeneity group. The models are classified according to
the possible distinct sets of the structure constants. They are first divided
into two classes: in class A the trace Ca

ba = 0, and in class B, Ca
ba �= 0. In

class A one can choose Ca
bc = n(a)εabc (no summation over a), and classify

various symmetry types by parameters n(a) with values 0,±1. In class B, in
addition to n(a), one needs the value of a constant scalar h (related to Ca

ba)
to characterize types VIh and VIIh (see e.g. [311]).

The simplest models are the Bianchi I cosmologies in class A with n(a) =
0, i.e. Ca

bc = 0, so that all three Killing vectors (the group generators) com-
mute. They contain the standard Einstein–de Sitter model with flat spatial
hypersurfaces (curvature index k = 0). In the vacuum case, all Bianchi I
models are given by the well-known 1-parameter family of Kasner metrics
(found in 1921 by E. Kasner and in 1933 by G. Lemâıtre without considering
the Bianchi groups)

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2, (100)

where
p1 + p2 + p3 = 1, p2

1 + p2
2 + p2

3 = 1. (101)

These metrics were first used to investigate various effects in anisotropic cos-
mological models. For example, in contrast to standard FRW models with
“point-like” initial singularities, the Kasner metrics can permit the so called
“cigar” and “pancake” singularities. To be more specific, consider the congru-
ence of timelike lines with unit tangent vectors nα orthogonal to constant time
hypersurfaces, and define the expansion tensor θαβ by θαβ = σαβ + 1

3θhαβ ,
where hαβ = gαβ + nαnβ is a projection tensor, σαβ = n(α;β) − 1

3θhαβ is the
shear, and θ = θ α

α . Determining the three spatial eigenvectors of θαβ with the
corresponding eigenvalues θi (i = 1, 2, 3), one can define the scale factors li
by the relation θi = (dli/dt)/li , and the Hubble scalar H = 1

3 (θ1 + θ2 + θ3).
In the FRW models, all li → 0 at the big bang singularity. In the Kasner
models at t → 0 one finds that either two of the li go to zero, whereas the
third unboundedly increases (a cigar); or one of the li tends to zero, while
the other two approach a finite value (pancake). Also there is the “barrel”
singularity in which the two of the li go to zero, and the third approaches

of the symmetry group to simplify the spatial metric gab (see [310,311] for more
details).
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a finite value. There is an open question as to whether some other possibili-
ties exist [311]. Even in the perfect fluid Kasner model, the approach to the
singularity is “velocity-dominated” – the “vacuum terms” given by the rates
of change of the scale factors dominate the “matter terms” (curvature terms
vanish since the Kasner models are spatially flat).

The general vacuum Bianchi type II cosmologies (with one n(a) = +1,
and the other two vanishing), discovered by Taub in [197], contain two free
parameters:

ds2 = −A2dt2 + A−2 t2p1(dx+4p1bz dy)2 + A2(t2p2 dy2 + t2p3 dz2), (102)

where
A2 = 1 + b2t4p1 , p1 + p2 + p3 = 1, p2

1 + p2
2 + p2

3 = 1. (103)

If we put the parameter b = 0, the metrics (102) become the Kasner solutions
(100). Near the big bang the general Bianchi type II solution is asymptotic
to a Kasner model. In the future it is asymptotic again to a Kasner model,
but with different values of parameters pi (see e.g. [311]). This fact will be
important in the following.

The general Bianchi type V vacuum solutions are also known – these are
given by the 1-parameter family of Joseph solutions [311]. The type V models
are the simplest metrics in class B (with all n(a) = 0 but Ca

bc = 2a[bδ
a
c], ab =

constant), and are the simplest Bianchi models which contain the standard
FRW open universes (k = −1). The Joseph solutions are asymptotic to the
specific Kasner solution in the past, and tend to the “isotropic Milne model”
in the future. This is intuitively understandable since open FRW models,
as they expand indefinitely into the future with matter density decreasing,
also approach the Milne model. As is well known, the Milne model is just an
empty flat (Minkowski) spacetime in coordinates adapted to homogeneous
spacelike hypersurfaces (the “mass hyperboloids”), with expanding normals
(see e.g. [28]):

ds2 = −dτ2 + τ2 [
(1 + ρ2)−1dρ2 + ρ2(dθ2 + sin2 θ dϕ2)

]
, (104)

with τ = t(1−u2)1/2, ρ = u(1−u2), u = r/t < 1, where t, r, θ, ϕ are standard
Minkowski (spherical) coordinates. Because of its significance as an asymp-
totic solution and its simplicity, the Milne model has been used frequently
in pedagogical expositions of relativistic cosmology (see e.g. [28,214]) as well
as in cosmological perturbation theory and quantization (see e.g. [315] and
references therein). The Milne universe is also an asymptotic state of other
Bianchi models such as, for example, the intriguing Lukash vacuum type VIIh
solution [316], which can be interpreted as two monochromatic, circularly po-
larized waves of time-dependent amplitude travelling in opposite directions
on a FRW background, with flat or negative curvature spacelike sections. As
was noticed earlier, some indefinitely expanding Bianchi models approach the
homogeneous plane wave solutions. Barrow and Sonoda [317] studied the fu-
ture asymptotic behaviour of the known Bianchi solutions in detail by using
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nonlinear stability techniques; and in [311] dynamical system methods were
used.

From the late 1960s onwards the greatest amount of work was probably
devoted to the Bianchi type IX vacuum models, baptized the Mixmaster
universe25 by Misner [312]. Type IX models are the most general class A
models with all parameters n(a) = +1. They are the only Bianchi universes
which recollapse. If a perfect fluid is permitted as the matter source, the
non-vacuum type IX solutions contain the closed FRW models (k = +1)
with space sections having spherical topology. As a Bianchi I space admits a
group isomorphic with translations in a 3-dimensional Euclidean space, the
group of type IX spaces is isomorphic to the group of rotations. None of
the pairs of three Killing vectors commute. A general Bianchi IX vacuum
solution is not known, but a particular solution is available: the Taub-NUT
spacetime, or rather, its spatially homogeneous anisotropic region – the Taub
universe (see Sect. 7.2). This fact was, for example, employed in an attempt
to understand the limitations of the minisuperspace methods of quantum
gravity: by reducing the degrees of freedom to a general Mixmaster universe
and then further to the Taub universe one can see what such restrictions
imply [318].

The dynamics of general Bianchi cosmologies – and of the Mixmaster
models in particular – close to the big bang singularity has been approached
with essentially three methods [311]: (i) piecewise approximation methods,
(ii) Hamiltonian methods, and (iii) dynamical system methods. In the first
method, used primarily by Russian cosmologists (cf. [299,300]), the evolution
is considered to be a sequence of periods in which certain terms in the Ein-
stein equations dominate whereas other terms can be neglected. The Hamil-
tonian methods appeared first in the “Mixmaster paper” by Misner [312],
were reviewed by Ryan [266], and more recently by Uggla in [311]. With the
Hamiltonian (canonical) approaches, minisuperspace methods entered gen-
eral relativity (cf. Sect. 9.2 on midisuperspace for cylindrical waves). In this
approach, infinitely many degrees of freedom are reduced to a finite number:
the state of the universe is described by a “particle” moving inside and re-
flecting instantaneously from the moving potential walls, which approximate
the time-dependent potentials in the Hamiltonian. In the third method one
employs the fact that Einstein’s equations in the case of homogeneous cos-
mologies can be put into the form of an autonomous system of first-order
(ordinary) differential equations on a finite dimensional space IRn. This is
of the form dx/dt = f(x), with x ∈ IRn representing a state of the model
(for example, the suitably normalized components of the shear σ, the Hubble

25 The name comes from the fact that, in contrast to a standard FRW model, which
has a horizon preventing the equalization of possible initial inhomogeneities over
large scales, the horizon in a type IX universe is absent, so that mixing is in prin-
ciple possible. However, as was shown e.g. in [309], “repeated circumnavigations
of the universe by light are impossible in the Mixmaster model”.
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scalar θ, and parameters related to n(a), can serve as the “components” of x).
A study of the orbits x(t) indicates the behaviour of the model. Dynamical
system methods are the focus of the book [311]. They also are the main tools
of the monograph [319].

In the case of the Bianchi IX models (either vacuum or with perfect fluid),
all three methods imply (though do not supply a rigorous proof) that an ap-
proach to the past big bang singularity is composed of an infinite sequence of
intervals, in each of which the universe behaves approximately as a specific
Kasner model (100). The transition “regimes” between two different subse-
quent Kasner epochs, in which the contraction proceeds along subsequently
different axes, is approximately described by Bianchi type II vacuum solutions
(102). This famous and enigmatic “oscillatory approach to the singularity”
(or “Mixmaster behaviour”) has rightly entered the classical literature (cf.
e.g. [18,19,139]). It indicates that the big bang singularity (and, similarly, a
singularity formed during a gravitational collapse) can be much more com-
plicated than the “point-like” singularity in the standard FRW models. This
oscillatory character has been suggested not only by the qualitative methods
mentioned above, but also by extensive numerical work (see e.g. [311,320]).
So far, however, it has resisted a rigorous proof.

In the “standard” picture of the Mixmaster model it is supposed that the
evolution of the Bianchi type IX universe near the singularity can be approxi-
mated by a mapping of the so called Kasner circle onto itself. This is the unit
circle in the Σ+Σ− plane, where Σ± = σ±/H describes the anisotropy in the
Hubble flow (cf. e.g. Fig. 6.2 in [311]). Each point on the circle corresponds
to a specific Kasner solution with given fixed values of parameters pi satis-
fying the conditions (101). There are three exceptional points on the circle
– those at which one of the pi = +1, and the other two vanish. From each
non-exceptional point P1 on the Kasner circle there leads a 1-dimensional
unstable orbit given by the vacuum Bianchi II solution (102), which joins
P1 to another point P2 on the circle, then P2 is mapped to P3 , etc. This
“Kasner map” in the terminology of [311], called frequently also the BKL
(Belinsky-Khalatnikov-Lifshitz) map, describes subsequent changes of Kas-
ner epochs during the oscillatory approach to a singularity. Recent rigorous
results of Rendall [321] show that for any finite sequence generated by the
BKL map, there exists a vacuum Bianchi type IX solution which reproduces
the sequence with any required accuracy.26

The vacuum Bianchi IX models have been extensively analyzed in the
context of deterministic chaos and their stochasticity, attracting the interest
of leading experts in these fields [320,322]. Above all, it is the numerical work
which strongly suggests that it is impossible to make long-time predictions of
26 A. Rendall (private communication) reports that the main points of the BKL

picture for homogeneous universes have been rigorously confirmed in a recent
work of H. Ringström (to be published).
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the evolution of the system from the initial data, which is the most significant
property of a chaotic system.

Most recently, interest in the Bianchi cosmologies with (homogeneous)
magnetic and scalar fields has been revived. Following his previous work with
Wainwright and Kerr on magnetic Bianchi VI0 cosmologies [323], LeBlanc
[324] has shown that even in Bianchi I cosmologies one finds an oscillatory
approach towards the initial singularity if a magnetic field in a general di-
rection is present. (The points on the Kasner circle are now joined by Rosen
magneto-vacuum solutions.) Hence, Mixmaster-like oscillations occur due to
the magnetic field degrees of freedom, even in the absence of an anisotropic
spatial curvature (present in the vacuum type IX models) – the result an-
ticipated by Jantzen [325] in his detailed work on Hamiltonian methods for
Bianchi cosmologies with magnetic and scalar fields. Similar conclusions have
also been arrived at in [326] for magnetic Bianchi II cosmologies. (LeBlanc’s
papers contain some new exact magnetic Bianchi solutions and a number of
references to previous work.) Interestingly, in contrast to the magnetic field,
scalar fields in general suppress the Mixmaster oscillations when approaching
the initial singularity [327,328].

The theory of spatially homogeneous, anisotropic models is an elegant, in-
triguing branch of mathematical physics. It has played an important role in
general relativity. The classical monograph of Zel’dovich and Novikov [309],
or the new volume of Wainwright and Ellis [311] analyze in detail the possi-
ble observational relevance of these models: they point out spacetimes close
to FRW cosmologies (at least during an epoch of finite duration) which are
compatible with observational data. For the most recent work on Bianchi
VIIh cosmologies which are potentially compatible with the highly isotropic
microwave background radiation, see [329] (and references therein). Never-
theless, the present status is such that, in contrast to for example the Kerr
solution, which is becoming an increasingly strong attractor for practical as-
trophysicists (cf. Sect. 4.3), the anisotropic models have not really entered
(astro)physical cosmology so far. Peebles, for example, briefly comments in
[28]: “The homogeneous anisotropic solutions allowed by general relativity
are a very useful tool for the study of departures from the Robertson-Walker
line element. As a realistic model for our Universe, however, these solutions
seem to be of limited interest, for they require very special initial conditions:
if the physics of the early universe allowed appreciable shear, why would it
not also allow appreciable inhomogeneities?”

An immediate reaction, of course, would be to point out that the FRW
models require still more “special initial conditions”. However, there appears
to be a deeper reason why the oscillatory approach towards a singularity may
be of fundamental importance. Belinsky, Khalatnikov and Lifshitz [299,300]
employed their piecewise approximation method, and concluded 30 years ago
that a singularity in a general, inhomogeneous cosmological model is spacelike
and locally oscillatory: i.e. in their scenario, the evolution at different spatial
point decouples. At each spatial point the universe approaches the singular-
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ity as a distinct Mixmaster universe. This view, often criticized by purists,
appears now to be gaining an increasing number of converts, even among the
most rigorous of relativists. As mentioned above, the homogeneous magnetic
Bianchi type VI0 models, investigated by LeBlanc et al., show Mixmaster
behaviour. The Bianchi VI0 models have, as do all Bianchi models, three
Killing vectors, but two of them commute. The models can thus be general-
ized by relaxing the symmetry connected with the third Killing vector; one
can so obtain effectively the inhomogeneous (in one dimension) Gowdy-type
spacetimes. Weaver, Isenberg and Berger [330], following this idea of Ren-
dall, analyzed these models numerically, and discovered that the Mixmaster
behaviour is reached at different spatial points. The numerical evidence for
an oscillatory singularity in a generic vacuum U(1) symmetric cosmologies
with the spatial topology of a 3-torus has been found still more recently by
Berger and Moncrief [331].

Before turning to the Gowdy models, a last word on the “oscillatory ap-
proach towards singularity”. I heard E. M. Lifshitz giving a talk on this issue
a couple of times, with Ya. B. Zel’dovich in the audience. In discussions after
the talk, Zel’dovich, who appreciated much this work (its detailed description
is included in [309]), could not resist pointing out that the number of oscil-
lations and Kasner epochs will be very limited (to only about ten) because
of quantum effects which arise when some scale of a model is smaller than
the Planck length lPl ∼ 10−33cm. This, however, seems to make the scenario
still more intriguing. If this is confirmed rigorously within classical relativity,
how will a future quantum gravity modify this picture?

12.2 Inhomogeneous Cosmologies

Among all of the known vacuum inhomogeneous models, the Gowdy solutions
[332] have undoubtedly played the most distinct role. They belong to the
class of solutions with two commuting spacelike Killing vectors. Within a
cosmological context, they form a subclass of a wider class of G2 cosmologies
– as are now commonly denoted models which admit an Abelian group G2
of isometries with orbits being spacelike 2-surfaces. A 2-surface with a 2-
parameter isometry group must be a space of constant curvature, and since
neither a 2-sphere nor a 2-hyperboloid possess 2-parameter subgroups, it
must be intrinsically flat. If the 2-surface is an Euclidean plane or a cylinder,
then one speaks about planar or cylindrical universes. Gowdy universes are
compact – the group orbits are 2-tori T 2.

The metrics with two spacelike Killing vectors are often called the general-
ized Einstein–Rosen metrics as, for example, by Carmeli, Charach and Malin
[333] in their comprehensive survey of inhomogeneous cosmological models
of this type. In dimensionless coordinates (t, z, x1, x2), the line element can
be written as (A,B = 1, 2)

ds2/L2 = eF (−dt2 + dz2) + γABdxAdxB , (105)
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where L is a constant length, F and γAB depend on t and z only, and thus
the spacelike Killing vectors are (1)ξα = (0, 0, 1, 0), (2)ξα = (0, 0, 0, 1).

The local behaviour of the solutions of this form is described by the gra-
dient of the “volume element” of the group orbits W = (|det(γAB)|)1/2.
Classical cylindrical Einstein–Rosen waves (cf. Sect. 9) are obtained if W,α is
globally spacelike. In Gowdy models, W,α varies from one region to another.27

Considering for simplicity the polarized Gowdy models (when the Killing
vectors are hypersurface orthogonal), the metric (105) can be written in di-
agonal form (cf. equations (62), (63), and (65), (66) in the analogous cases
of plane and cylindrical waves)

ds2/L2 = e−2U
[
e2γ(−dt2 + dz2) + W 2dy2] + e2Udx2, (106)

in which U(t, z) and γ(t, z) satisfy wavelike dynamical equations and con-
straints following from the vacuum Einstein equations; the function W (t, z),
which determines the volume element of the group orbit, can be cast into
a standard form which depends on the topology of t = constant spacelike
hypersurfaces Σ.

As mentioned above, in Gowdy models one assumes these hypersurfaces
to be compact. Gowdy [332] has shown that Σ can topologically be (i) a
3-torus T 3 = S1 ⊗ S1 ⊗ S1 and W = t (except for the trivial case when
spacetime is identified as a Minkowski space), (ii) a 3-handle (or hypertorus,
or “closed wormhole”) S1 ⊗ S2 with W = sin z sin t, or (iii) a 3-sphere S3,
again with W = sin z sin t. (For some subtle cases not covered by Gowdy, see
[334].) As the form of W suggests, in the case of a T 3 topology, the universe
starts with a big bang singularity at t = 0 and then expands indefinitely,
whereas in the other two cases it starts with a big bang at t = 0, expands
to some maximal volume, and then recollapses to a “big crunch” singularity
at t = π. One can determine exact solutions for metric functions in all three
cases in terms of Bessel functions [335]. Hence, for the first time cosmological
models closed by gravitational waves were constructed. Charach found Gowdy
universes with some special electromagnetic fields [336], and other generalized
Gowdy models were obtained. We refer to the detailed survey [333] for more
information, including the work on canonical and quantum treatments of
these models, done at the beginning of the 1970s by Berger and Misner, and
for extensive references.

Let us only add a few remarks on some more recent developments in which
the Gowdy models have played a role. Gowdy-type models have been used
to study the propagation and collision of gravitational waves with toroidal
wavefronts (as mentioned earlier, 2-tori T 2 are the group orbits in the Gowdy

27 The same is true in the boost-rotation symmetric spacetimes considered in Sect.
11: the part t2 > z2 of the spacetimes, where the boost Killing vector is spacelike,
can be divided into four different regions, in two of which vector W,α is spacelike,
and in the other two timelike – see [288] for details.
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cosmologies) in the FRW closed universes with a stiff fluid [337]. In the stan-
dard Gowdy spacetimes it is assumed that the “twists” associated with the
isometry group on T 2 vanish. In [338] the generalized Gowdy models without
this assumption are considered, and their global time existence is proved.

As both interesting and non-trivial models, the Gowdy spacetimes have
recently attracted the attention of mathematical and numerical relativists
with an increasing intensity, as indicated already at the end of the previous
section. Chruściel, Isenberg and Moncrief [339] proved that Gowdy spacetimes
developed from a dense subset in the initial data set cannot be extended past
their singularities, i.e. in “most” Gowdy models the strong cosmic censorship
is satisfied.

On cosmic censorship and spacetime singularities, especially in the context
of compact cosmologies, we refer to a review by Moncrief [340], based on his
lecture in the GR14 conference in Florence in 1995. The review shows clearly
how intuition gained from such solutions as the Gowdy models or the Taub-
NUT spaces, when combined with new mathematical ideas and techniques,
can produce rigorous results with a generality out of reach until recently. To
such results belongs also the very recent work of Kichenassamy and Rendall
[341] on the sufficiently general class of solutions (containing the maximum
number of arbitrary functions) representing unpolarized Gowdy spacetimes.
The new mathematical technique, developed by Kichenassamy [342], the so
called Fuchsian algorithm, enables one to construct singular (and nonsingu-
lar) solutions of partial differential equations with a large number of arbitrary
functions, and thus provide a description of singularities. Applying the Fuch-
sian algorithm to Einstein’s equations for Gowdy spacetimes with topology
T 3, Kichenassamy and Rendall have proved that general solutions behave at
the (past) singularity in a Kasner-like manner, i.e. they are asymptotically
velocity dominated with a diverging Kretschmann (curvature) invariant. One
needs an additional magnetic field not aligned with the two Killing vectors of
the Gowdy unpolarized spacetimes in order to get a general oscillatory (Mix-
master) approach to a singularity, as shown by the numerical calculations
[330] mentioned at the end of the previous section.

Much of the work on exact inhomogeneous vacuum cosmological mod-
els has been related to “large perturbations” of Bianchi universes. In [343]
the authors confined attention to “plane wave” solutions propagating over
Bianchi backgrounds of types I-VII. They found universes which are highly
inhomogeneous and “chaotic” at early times, but are transformed into clearly
“recognizable” gravitational waves at late times.

Other types of metrics can be considered as exact “gravitational solitons”
propagating on a cosmological background. These are usually obtained by ap-
plying the inverse scattering or “soliton” technique of Belinsky and Zakharov
[344] to particular solutions of Einstein’s equations as “seeds”. For example,
Carr and Verdaguer [345] found gravisolitons by applying the technique to
the homogeneous Kasner seed. Similarly to previous work [343], their models
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are very inhomogeneous at early times, but evolve towards homogeneity in a
wavelike manner at late times.

More recently, Belinsky [346], by applying a two-soliton inverse scattering
technique to a Bianchi type VI0 solution as a seed, constructed an intriguing
solution which he christened as a “gravitational breather”, in analogy with the
Gordon breather in the soliton theory of the sine-Gordon equation. Gravisoli-
tons and antigravisolitons, characterized by an opposite topological charge,
can be heuristically introduced and shown to have an attractive interaction.
The breather is a bound state of the gravisoliton and antigravisoliton. Be-
linsky suggests that a time oscillating breather exists; but a later discussion
[347] indicates that the oscillations quickly decay. Alekseev, by employing his
generalization of the inverse scattering method to the Einstein–Maxwell the-
ory, obtained exact electrovacuum solutions generalizing Belinsky’s breather
(see his review [348], containing a general introduction on exact solutions).

Verdaguer [349] prepared a very complete review of solitonic solutions
admitting two spacelike Killing vector fields, with the main emphasis on cos-
mological models. Among various aspects of such solutions, he has noted
the role of the Bel-Robinson superenergy tensor in the interpretation of cos-
mological metrics. This tensor and its higher-order generalizations has also
been significantly used in estimates in the proofs of long-time existence theo-
rems [39,340]. Recently, differential conservation laws for large perturbations
of gravitational field with respect to a given curved background have been
fomulated [350], which found an application in solving equations for cosmo-
logical perturbations corresponding to topological defects [351]. They should
bring more light also on various solitonic models in cosmology.

13 Concluding Remarks

It is hoped that the preceding pages have helped to elucidate at least one
issue: that in such a complicated nonlinear theory as general relativity, it is
not possible to ask relevant questions of a general character without finding
and thoroughly analyzing specific exact solutions of its field equations. The
role of some of the solutions in our understanding of gravity and the universe
has been so many-sided that to exhibit this role properly on even more than
a hundred pages is not really feasible ...

Although we have concentrated on only (electro)vacuum solutions, there
remains a number of such solutions that have also played some role in various
contexts, but, owing to the absence of additional space and time, or the
presence of the author’s ignorance, have not been discussed. Tomimatsu-Sato
solutions and their generalizations, static plane and cylindrical metrics, and
some algebraically special solutions are examples.

In his review of exact solutions, Ehlers [56] wrote 35 years ago that “it
seems desirable to construct material sources for vacuum solutions”, and 30
years later Bonnor [64], in his review, expressed a similar view. In the above
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we have noted only some of the thin disk sources of static and stationary
spacetimes in Sect. 6. To find physically reasonable material sources for many
of the known vacuum solutions remains a difficult open task. In order to make
solutions of Einstein’s equations with the right-hand side more tractable,
one is often tempted to sacrifice realism and consider materials, again using
Bondi’s phraseology, which are not easy to buy in the shops. Nevertheless,
there are solutions representing spacetimes filled with matter which would
certainly belong in a more complete discussion of the role of exact solutions.

For example, one of the simplest, the spherically symmetric Schwarzschild
interior solution with an incompressible fluid as matter source, modelling
“a star of uniform density”, gives surprisingly good estimates of an upper
bound on the masses of neutron stars; on a more general level, it supplies
an instructive example of relativistic hydrostatics [18]. Many other spherical
perfect fluid solutions are listed in [61]. The proof of a very plausible fact
that any equilibrium, isolated stellar model which is nonrotating must be
spherically symmetric, was finally completed in [352] and [353]. Physically
more adequate spherically symmetric static solutions with collisionless mat-
ter described by the Boltzmann (Vlasov) equation have been studied [101]
(yielding, for example, arbitrarily large central redshifts); and some of their
aspects have been recently reviewed from a rigorous, mathematical point of
view [354]. Going over to the description of matter in terms of physical fields,
we should mention the first spherically symmetric regular solutions of the
Einstein–Yang–Mills equations (“non-Abelian solitons” discovered by Bart-
nik and McKinnon [355] in 1988), and non-Abelian black holes with “hair”,
which were found soon afterwards. They stimulated a remarkable activity in
the search for models in which gravity is coupled with Yang–Mills, Higgs, and
Skyrmion fields. Very recently these solutions have been surveyed in detail
in the review by Volkov and Gal’tsov [356].

The role of the standard FRW cosmological models on the development
of relativity and cosmology can hardly be overemphasized. As for two more
recent examples of this influence let us just recall that the existence of cosmo-
logical horizons in these models was one of the crucial points which inspired
the birth of inflationary cosmology (see e.g. [28]); and the very smooth char-
acter of the initial singularity has led Penrose [102] to formulate his Weyl
curvature hypothesis, related to a still unclear concept of gravitational en-
tropy. Homogeneous but anisotropic Bianchi models filled with perfect fluid
are extensively analyzed in [311]. Very recent studies of Bianchi models with
collisionless matter [357] reveal how the matter content can qualitatively alter
the character of the model.

A number of Bianchi models approach self-similar solutions. Perfect fluid
solutions admitting a homothetic vector, which in this case implies both
geometrical and physical self-similarity, have been reviewed most recently by
Carr and Coley [358]. In their review various astrophysical and cosmological
applications of such solutions are also discussed. Self-similar solutions have
played a crucial role in the critical phenomena in gravitational collapse. Since
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their discovery by Choptuik in 1993, they have attracted much effort, which
has revealed quite unexpected facts. In [358] these phenomena are analyzed
briefly. For a more comprehensive review, see [359].

Self-similar, spherically symmetric solutions have been very relevant in
constructing examples of the formation of naked singularities in gravitational
collapse (see [358] for a brief summary and references). In particular, the in-
homogeneous, spherically symmetric Lemâıtre–Bondi–Tolman universes con-
taining dust have been employed in this context. Solutions with null dust
should be mentioned as well, especially the spherically symmetric Vaidya so-
lutions: imploding spherical null-dust models have been constructed in which
naked singularities arise at their centre (see [32] for summary and references).

The Lemâıtre–Bondi–Tolman models are the most frequently analyzed
inhomogeneous cosmological models which contain the standard FRW dust
models as special cases (see e.g. [28,32]). In his recent book Krasiński [360]
has compiled and discussed most if not all of these exact inhomogeneous cos-
mological solutions found so far which can be viewed as “exact perturbations”
of the FRW models.

Many solutions known already still wait for their role to be uncovered.
The role of many others may forever remain just in their “being”. However,
even if new solutions of a “Kerr-like significance” will not be obtained in
the near future, we believe that one should not cease in embarking upon
journeys for finding them, and perhaps even more importantly, for revealing
new roles of solutions already known. The roads may not be easy, but with
todays equipment like Maple or Mathematica, the speed is increasing. Is
there another so explicit way of how to learn more about the rich possibilities
embodied in Einstein’s field equations?

The most remarkable figure of Czech symbolism, Otokar Březina (1868-
1929) has consoling words for those who do not meet the “Kerr-type” metric
on the road: “Nothing is lost in the world of the spirit; even a stone thrown
away may find its place in the hands of a builder, and a house in flames may
save the life of someone who has lost his way...”.
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11. Bičák, J. (1989) Einstein’s Prague articles on gravitation, in Proceedings of
the 5th M. Grossmann Meeting on General Relativity, eds. D. G. Blair and
M. J. Buckingham, World Scientific, Singapore. A more detailed technical
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67. Ehlers, J. (1973) Survey of General Relativity Theory, in Relativity, Astro-
physics and Cosmology, ed. W. Israel, D. Reidel, Dordrecht

68. Künzle, H. P. (1967) Construction of singularity-free spherically symmetric
space-time manifolds, Proc. Roy. Soc. Lond. A297, 244

69. Schmidt, B. G. (1967) Isometry groups with surface-orthogonal trajectories,
Zeits. f. Naturfor. 22a, 1351

70. Israel, W. (1987) Dark stars: the evolution of an idea, in 300 years of gravi-
tation, eds. S. W. Hawking and W. Israel, Cambridge University Press, Cam-
bridge

71. Ciufolini, I., Wheeler, J. A. (1995) Gravitation and Inertia, Princeton Univer-
sity Press, Princeton

72. Will, C. M. (1996) The Confrontation between General Relativity and Experi-
ment: A 1995 Update, in General Relativity (Proceedings of the 46th Scottish
Universities Summer School in Physics), eds. G. S. Hall and J. R. Pulham,
Institute of Physics Publ., Bristol

73. Schneider, P., Ehlers, J. and Falco, E. E. (1992) Gravitational Lenses,
Springer-Verlag, Berlin

74. Hawking, S. W. (1973) The Event Horizon, in Black Holes (Les Houches 1972),
eds. C. DeWitt and B. S. DeWitt, Gordon and Breach, New York-London-
Paris

75. Thorne, K. S., Price, R. H. and MacDonald, D. A. (1986) Black Holes: The
Membrane Paradigm, Yale University Press, New Haven

76. Frolov, V., Novikov, I. (1998) Physics of Black Holes, Kluwer, Dordrecht
77. Clarke, C. J. S. (1993) The Analysis of Space-Time Singularieties, Cambridge

University Press, Cambridge
78. Boyer, R. H. (1969) Geodesic Killing orbits and bifurcate Killing horizons,

Proc. Roy. Soc. (London) A311, 245
79. Carter, B. (1972) Black Hole Equilibrium States, in Black Holes (Les Houches

1972), eds. C. De Witt and B. S. De Witt, Gordon and Breach, New York-
London-Paris
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116. Hubený, V. E. (1999) Overcharging a Black Hole and Cosmic Censorship,
Phys. Rev. D59, 064013
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143. Bičák, J., Stuchĺık, Z. (1976) The fall of the shell of dust onto a rotating black
hole, Mon. Not. Roy. Astron. Soc. 175, 381
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168. Bičák, J., Hoenselaers, C. (1985) Two equal Kerr-Newman sources in station-
ary equilibrium, Phys. Rev. D31, 2476



The Role of Exact Solutions 117

169. Weinstein, G. (1996) N-black hole stationary and axially symmetric solutions
of the Einstein/Maxwell equations, Comm. Part. Diff. Eqs. 21, 1389

170. Dietz, W., Hoenselaers, C. (1982) Stationary System of Two Masses Kept
Apart by Their Gravitational Spin-Spin Interaction, Phys. Rev. Lett. 48, 778;
see also Dietz, W. (1984) HKX-Transformations: Some Results, in Solutions
of Einstein’s Equations: Techniques and Results, eds. C. Hoenselaers and W.
Dietz, Lecture Notes in Physics 205, Springer-Verlag, Berlin

171. Kastor, D., Traschen, J. (1993) Cosmological multi-black-hole solutions, Phys.
Rev. D47, 5370

172. Brill, D. R., Horowitz, G. T., Kastor, D. and Traschen, J. (1994) Testing
cosmic censorship with black hole collisions, Phys. Rev. D49, 840

173. Welch, D. L. (1995) Smoothness of the horizons of multi-black-hole solutions,
Phys. Rev. D52, 985

174. Brill, D. R., Hayward, S. A. (1994) Global structure of a black hole cosmos
and its extremes, Class. Quantum Grav. 11, 359

175. Ida, D., Nakao, K., Siino, M. and Hayward, S. A. (1998) Hoop conjecture for
colliding black holes, Phys. Rev. D58, 121501

176. Scott, S. M., Szekeres, P. (1986) The Curzon singularity I: spatial section,
Gen. Rel. Grav. 18, 557; The Curzon singularity II: global picture, Gen. Rel.
Grav. 18, 571
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181. Semerák, O., Zellerin, T. and Žáček, M. (1999) The structure of superposed
Weyl fields, Mon. Not. Roy. Astron. Soc., 308, 691 and 705

182. Lemos, J. P. S., Letelier, P. S. (1994) Exact general relativistic thin disks
around black holes, Phys. Rev. D49, 5135
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(1992) Non-Smoothness of Event Horizons of Robinson-Trautman Black Holes,
Commun. Math. Phys. 147, 137, and references therein

283. Bičák, J., Podolský, J. (1995) Cosmic no-hair conjecture and black-hole for-
mation: An exact model with gravitational radiation, Phys. Rev. D52, 887
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The Cauchy Problem
for the Einstein Equations

Helmut Friedrich and Alan Rendall

Max-Planck-Institut für Gravitationsphysik, Am Mühlenberg 1,
14476 Golm, Germany

Abstract. Various aspects of the Cauchy problem for the Einstein equations are
surveyed, with the emphasis on local solutions of the evolution equations. Particular
attention is payed to giving a clear explanation of conceptual issues which arise
in this context. The question of producing reduced systems of equations which
are hyperbolic is examined in detail and some new results on that subject are
presented. Relevant background from the theory of partial differential equations is
also explained at some length.

1 Introduction

One of the most striking differences between the Newtonian theory of gravity
and its successor, general relativity, is that in the latter the gravitational field
acquires its own dynamical properties. Its time evolution is complicated even
in the absence of matter. This contrasts with the fact that in the Newto-
nian theory the field vanishes when no matter is present. The field equation,
namely the Poisson equation, together with the boundary condition that the
field vanishes at infinity, which is an essential part of the theory, combine
to give this result. The Einstein equations, the field equations of general rel-
ativity, allow idealized situations which represent gravitational waves in an
otherwise empty universe, without any material sources. This reflects the
different mathematical nature of the equations involved in these two cases.
The Poisson equation is elliptic while the Einstein equations are essentially
hyperbolic in nature. The meaning of the term ’essential’ in this context is
not simple and explaining it is a major theme in the following.

In order to understand the special theoretical difficulties connected with
the Einstein equations and what mathematical approaches may be appro-
priate to overcome them, it is useful to compare gravitation with electro-
magnetism. The motion of charged matter can be described within the full
Maxwell theory. However, there is also another possibility, which is used when
relativistic effects are small, for instance in many situations in plasma physics.
Here dynamical matter is coupled to the electrostatic field generated by this
matter at any given time. In this quasi-static model the electric field follows
the sources in a passive way while in the full theory there are propagating
degrees of freedom. As in the case of gravitation, the elliptic equation in the

B.G. Schmidt (Ed.): LNP 540, pp. 127−223, 1999.
© Springer-Verlag Berlin Heidelberg 1999



128 Helmut Friedrich and Alan Rendall

non-relativistic theory (the Poisson equation again) is replaced by a system
of hyperbolic equations, the Maxwell equations.

The fact that the Maxwell equations are so tractable is due to their lin-
earity, a convenient feature not shared by the Einstein equations. The theory
of linear partial differential equations in general, and of linear hyperbolic
equations in particular, are much better developed than the corresponding
nonlinear theories. As a side remark it may be noted that the combined
equations describing electromagnetic fields together with their sources are
nonlinear and that in that context serious theoretical problems, such as that
of describing radiation damping, do appear.

Solutions of hyperbolic equations can be uniquely determined by their
values on a suitable initial hypersurface. The Cauchy problem is the task
of establishing a one to one correspondence between solutions and initial
data, and studying further properties of this correspondence. The solution
determined by a particular initial datum may be global, i.e. defined on the
whole space where the equations are defined, or local, i.e. only defined on a
neighbourhood of the initial hypersurface. ’Local’ and ’global’ could be called
local and global in time since in the case where a preferred time coordinate
is present that is exactly what they mean.

From what has been said so far we see that in studying the Einstein equa-
tions we are faced with a system of nonlinear hyperbolic equations. Among
nonlinear hyperbolic equations in physics, those which have been studied
most extensively are the Euler equations, and so we may hope to get some
insights from that direction. At the same time, it is wise to be careful not to
treat the analogy too uncritically, since the status of the Euler and Einstein
equations is very different. The Euler equations are phenomenological in na-
ture and much is understood about how they arise from models on a more
fundamental level. The Einstein equations have been thought of as represent-
ing fundamental physics for most of their history and the recent idea that
they arise as a formal limiting case in string theory will require, at the very
least, a lot more work before it can offer a solid alternative to this. To return
to the Euler equations, one of their well-known features is the formation of
shocks. While there is no indication of a directly analogous phenomenon for
the Einstein equations, it does draw attention to a fundamental fact. For lin-
ear hyperbolic equations it is in general possible to solve the Cauchy problem
globally, i.e. to show the existence of a global solution corresponding to each
initial datum. For nonlinear hyperbolic equations this is much more difficult
and whether it can be done or not must be decided on a case by case basis.
The formation of shocks in solutions of the Euler equations is an example of
the difficulties which can occur. A general theory for general equations can
only be hoped for in the case of the local (in time) Cauchy problem.

For the Einstein equations we must expect to encounter the problem that
solutions of the Cauchy problem for nonlinear hyperbolic equations do not
exist globally. In the case of the Einstein equations this issue is clouded by the
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fact that the distinction between local and global solutions made above does
not apply. To define the notions of local and global we used the concept of the
space where the equations are defined. In other words we used a background
space. As we will see in more detail later, in the case of the Einstein equations
there is no background space; the space-time manifold is part of the solution.
It is better in this case to talk only about local and global properties of
solutions and not about local and global solutions. We may then loosely use
the words ’local’ and ’global’ to refer to all aspects of the Cauchy problem
which refer to local and global properties of solutions, respectively. Solutions
of the Einstein equations present global features such as the formation of
black holes which are peculiar to this system and which are made possible
by the lack of a background space.

In this article we are not concerned with general systems of nonlinear hy-
perbolic equations, but with a particular one, which is given to us by general
relativity. Actually, when the coupling to matter fields is taken into account,
we do get a variety of hyperbolic systems. Nevertheless, we might hope that
in at least some situations of interest, such as gravitational collapse, the dy-
namics of the gravitational field would dominate the qualitative behaviour
and let the effects of the particular matter model fade into the background.
In any case, it is useful to retain the distinction between the local and global
Cauchy problems. The global problem is what we want to solve, but the local
problem is a natural first step. Our original plan was to cover both topics,
but along the way we discovered that the first step is already so rich that
on grounds of time and space we have relegated global questions to passing
remarks. Along the way we stumbled over a variety of ‘well-known’ things
which turned out not to be known at all, or even to be false.

The theory of the Cauchy problem allows us to formulate and establish
relativistic causality within general relativity. Another basic function of the
solution of the Cauchy problem is to parametrize solutions of the field equa-
tions in a useful way. To single out the class of solutions relevant to the
description of a given physical situation, we can single out an appropriate
subclass of initial data, which is often simpler to do. This does not mean
that by identifying this class of solutions we have solved the problem. Rather
it means that we have found a class of problems which may be of physical
relevance and which it is therefore desirable to investigate mathematically. In
the end the central mathematical problem is to discover some of the global
properties of the solutions being studied. As has already been said, this ar-
ticle is almost entirely restricted to local questions, so that we will say little
more about this point. However we will return to it in the last section.

The point of view of the Cauchy problem can also be used to throw light
on various other issues. For instance, it provides a framework in which it
can be shown that certain approximation methods used in general relativity
really provide approximations to solutions of the Einstein equations. It can
help to provide an analytical basis for the development of efficient and reliable
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numerical schemes to solve the Einstein equations. The Cauchy problem can
furnish examples which throw light on general conjectures about solutions of
the Einstein equations. It can be used to investigate whether certain prop-
erties of explicit solutions of the Einstein equations of importance in general
relativity are stable to perturbations.

The structure of the article will now be outlined. In the second section a
number of fundamental concepts are introduced and critically reviewed. In
particular, the splitting of the field equations into evolution equations and
constraints is described. The rest of the article concentrates on the evolu-
tion equations. The question of how to solve the constraints on the initial
hypersurface is not considered further. The second section presents the basic
elements which go into solving the local Cauchy problem. It discusses in par-
ticular the question of gauge freedom and how to show that the constraints
are satisfied everywhere, given that they are satisfied on the initial hyper-
surface (propagation of the constraints). These are aspects of the question
of hyperbolic reduction, i.e. how questions about the Cauchy problem for the
Einstein equations can be reduced to questions about the Cauchy problem
for hyperbolic equations.

The solution of the Cauchy problem relies on the use of techniques from
the theory of partial differential equations (PDE). The third section presents
some of the relevant techniques and attempts to explain some of the im-
portant concepts which play a role in the theory of the Cauchy problem for
hyperbolic equations. We have chosen to concentrate on symmetric hyper-
bolic systems rather than on other kinds of hyperbolic equations such as
nonlinear wave equations, which could also be used as a basis for studying
the Cauchy problem for the Einstein equations. It will be seen that symmet-
ric hyperbolic systems provide a very flexible tool. A comparative discussion
of various notions of hyperbolicity is also given.

In the fourth section we return to the question of hyperbolic reduction.
Different ways of reducing the Einstein equations in 3+1 form are presented
and compared. The ADM equations, which were already introduced in Sect.
2, are discussed further. A form of these equations which has proved successful
in numerical calculations is analysed. A number of other illustrative examples
are treated in detail. The first example is that of the Einstein–Euler system
for a self-gravitating perfect fluid. The case of dust, which is significantly
different from that of a fluid with non-vanishing pressure, and which leads
to serious problems in some approaches, is successfully handled. The second
example is a variant of the pure Cauchy problem, namely the initial boundary
value problem. The third example is the Einstein–Dirac system, which gives
rise to particular problems of its own.

The fifth section starts with a discussion of the proofs of the basic state-
ments of local existence, uniqueness and stability for the Einstein equations,
based on the PDE theory reviewed in the third section and a particular hy-
perbolic reduction already introduced in Sect. 2. Then the extension of these
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results to the case where different kinds of matter are present is sketched.
Existence, uniqueness and stability constitute together the statement that
the Cauchy problem is well-posed. The significance of this is underlined by
an example of a situation where the Cauchy problem is ill-posed. Finally it
is shown how existence and uniqueness imply the inheritance of symmetries
of the initial data by the corresponding solutions.

The choice of topics covered in this article is heavily dependent on the
interests of the authors. In the last section we list a number of the important
topics which were not discussed. While this list is also influenced by personal
taste, we hope that it will provide the interested reader with the opportunity
to form a balanced view of the subject.

2 Basic Observations and Concepts

In this section we give an introductory survey of various aspects of the field
equations. Most of them will be discussed again, in greater detail, in later
sections.

Gravitational fields represented by isometric space-times must be consid-
ered as physically equivalent and therefore the field equations for the metric
must have the property that they determine isometry classes of solutions, not
specific coordinate representations. This is achieved by the covariant Einstein
equations

Rμν −
1
2
Rgμν + λ gμν = κTμν .

It is often said that many of the specific features of the Einstein equations are
related to this covariance. One may wonder, however, what is so special about
it, since the wave equation, the Yang–Mills equations, the Euler equations,
just to name a few examples, are also covariant. The difference lies in the
fundamental nature of the metric field. While the examples just quoted are
defined with respect to some background structure, namely a given Lorentz
space (in the case of the Yang–Mills equations in four dimensions a conformal
structure suffices), the Einstein equations are designed to determine Lorentz
manifolds without introducing any extraneous structures. Consequently, the
solutions of the equations themselves provide the background on which the
equations are to be solved.

This makes it evident that Einstein’s equations can at best be quasi-linear.
That they are in fact quasi-linear can be seen from their explicit expression.
Writing the equation in the form

Rμν − λ gμν = κ (Tμν −
1
2
T gμν), (2.1)

the principal part of the differential operator of second order which acts on
the metric coefficients is given by the left hand side. In arbitrary coordinates
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we have

Rμν = −1
2
gλρ

{
∂2gμν

∂xλ ∂xρ
+

∂2gλρ

∂xμ ∂xν
− ∂2gμρ

∂xλ ∂xν
− ∂2gρν

∂xμ ∂xλ

}
+ Qμν(g, ∂ g),

(2.2)
where Q denotes a rational function of the metric coefficients and their first
order derivatives. We see that the equations are quasi-linear but not better,
i.e. they are linear in the derivatives of highest order but these derivatives
come with coefficients which are given by the unknown itself. The Euler
equations are also quasi-linear in this sense. However, they are studied in
general on an independent background space-time in terms of which their
solutions may be analysed.

2.1 The Principal Symbol

Consider a system of k partial differential equations of order m for an R
k-

valued unknown u defined on an open subset U of R
n. Suppose that in coor-

dinates xμ, μ = 1, . . . , n on U it takes the form

P u ≡
∑

|α|≤m

Aα Dα u = f. (2.3)

Here the Aα denote smooth real k × k-matrix-valued functions, f(x) is a
smooth R

k-valued function, the α = (α1, . . . , αn), with non-negative integers
αj , are multi-indices, |α| = α1 + . . . + αn, and Dα = ∂α1

x1 . . . ∂αn
xn . Assume,

first, that the equations are linear, so that Aα = Aα(x).
The question of the formal solvability of the equation leads to the impor-

tant notion of a characteristic. Suppose that H = {Φ = const., d Φ �= 0} is a
hypersurface of U , defined in terms of a smooth function Φ. A Cauchy data
set on H for equation (2.3) consists of a set of functions u0, u1, . . . , u(m−1)
on H. Let the coordinates xμ be chosen such that Φ = x1 near H. Interpret-
ing the functions ui as the derivatives ∂i

x1u of a solution u to our equation,
defined in a neighbourhood of H, we ask whether equation (2.3) allows the
function ∂m

x1u to be determined uniquely on H from the Cauchy data. Since
all functions Dα u with α1 ≤ m− 1, can obviously be derived from the data,
it follows that we can solve the equation on H for ∂m

x1 u if and only if the
matrix A(m,0,...,0) is invertible at all points of H. Using for any covector ξμ

and multi-index α the notation ξα = ξα1
1 . . . ξαn

n , we observe that with our
assumptions A(m,0,...,0) =

∑
|α|=m Aα Dα Φ. The invertibility of the matrix

on the right hand side is independent of the coordinates chosen to represent
equation (2.3) and the function Φ used to represent H. This follows from
the transformation law of the coefficients of the differential equation and of
covectors under coordinate transformations.

We are thus led to introduce the following covariant notions. For a cov-
ector ξ at a given point x ∈ M , we define the principal symbol of (2.3)
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at (x, ξ) as the matrix σ(x, ξ) =
∑

|α|=m Aα(x) ξα (or the associated linear
map). The reader should be warned that a definition with ξi replaced by iξi,
where i is the imaginary unit, is often used, since it fits well with the Fourier
transform. The latter convention will not be used here. A hypersurface H,
represented by a function Φ as above, is called nowhere characteristic for
(2.3), if det(σ(x, dΦ)) �= 0 for x ∈ H and we say that H is a characteristic
hypersurface, or simply a characteristic for (2.3), if det(σ(x, dΦ(x))) = 0 for
x ∈ H.

Given Cauchy data on a hypersurface H which is nowhere characteristic,
we can determine a formal expansion of a possible solution u in terms of
x1 on H by taking formal derivatives of (2.3) and solving for ∂i

x1 u on H,
i = m,m + 1, . . .. Conversely, if H is characteristic, Cauchy data cannot
be prescribed freely on H, because the equation implies relations among the
Cauchy data on H. We refer to these relations as the inner equations induced
by the equations on the characteristic.

If the rank of the matrix σ(x, dΦ(x)) is k−j with some positive integer j,
there are j such relations. The principal symbol is not sufficient to describe
the precise nature of these relations. The complete information of (2.3) is
needed for this.

If equation (2.3) is quasi-linear, so that the coefficients of the equation do
not only depend on the points of M but also on the unknown and its deriva-
tives of order less than m, we have to proceed slightly differently. Suppose
u is a solution of the quasi-linear equation (2.3). For given covector ξ at the
point x ∈ M we define the principal symbol of (2.3) with respect to u as the
matrix σ(x, ξ) =

∑
|α|=m Aα(x, u(x), . . . , Dβ u(x)||β|=m−1) ξα and use it to

define, by the condition above, the characteristics of (2.3) with respect to u.
Thus for quasi-linear equations the characteristics depend on the solution.

We return to the Einstein equations. Assuming that (M, g) is a solution of
(2.1) of dimension n, we find that for given covector ξ at x ∈ M the principal
symbol of the operator in (2.2) defines the linear map

kμν → (σ · k)μν = −1
2
gλρ(x) {kμν ξλ ξρ + kλρ ξμ ξν − kμρ ξλ ξν − kλν ξμ ξρ} ,

(2.4)
of the set of symmetric covariant tensors at x into itself. If kμν is in its kernel,
we have

0 = kμν ξρ ξρ + gρλ kρλ ξμ ξν − kμρ ξρ ξν − kνρ ξρ ξμ, (2.5)

from which we see that tensors of the form kμν = ξμ ην +ξν ημ, with arbitrary
covector η, generate an n-dimensional subspace of the kernel. This subspace
coincides with the kernel if ξρ ξρ �= 0. If ξρ ξρ = 0, ξρ �= 0, equation (2.5)
takes the form ξμ ην + ξν ημ = 0, with some covector ημ. Since ξμ �= 0 we
must have ημ = 0 or, equivalently, 1

2 gρλ kρλ ξν = kρν ξρ. The solutions, given
by kμν = hμν+a (ξμ η∗

ν+ξν η∗
μ) with a ∈ R, η∗

μ a fixed covector with ξμ η∗
μ �= 0,

and hμν satisfying ξμ hμν = 0, gμν hμν = 0, span a space of dimension n (n−1)
2 ,

which is strictly larger than n if n ≥ 4.
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It follows that any hypersurface is characteristic for the Einstein equa-
tions. In the case of spacelike or timelike hypersurfaces n relations are im-
plied on Cauchy data sets, in the case of null hypersurfaces there are n (n−3)

2
additional relations. The fact that the rank of the principal symbol drops fur-
ther for covectors ξ which are null has the immediate consequence that the
inner equations induced on null hypersurfaces are completely different from
the inner equations induced on nowhere characteristic hypersurfaces. This is
related to the fact that null hypersurfaces (and appropriate generalizations
admitting caustics) may represent wave fronts, swept out by high frequency
perturbations of the field. The propagation of the latter is governed by the
inner equations induced on these hypersurfaces (cf. [27] and, for a modern
discussion, also [54], [88] for the mathematical aspects of this statement).

The fact that on any hypersurface the tensors of the form kμν = ξμ ην +
ξν ημ are in the kernel of the principal symbol map at (x, ξ) can be deduced by
an abstract argument which uses only the covariance and the quasi-linearity
of the equations (cf. [12], [64]). This emphasizes again the special role of null
hypersurfaces. Assume that φτ is the flow of a vector field X. If we denote
by φ∗

τ the associated pull-back operation, we have

φ∗
τ (Ric[g]) = Ric[φ∗

τ (g)].

Taking derivatives with respect to τ we obtain

LX Ric[g] = Ric′
g[LX g],

where the right hand side denotes the (at g) linearized Ricci operator applied
to the Lie derivative LX gμν = ∇μ Xν + ∇ν Xμ of the metric. Considering
this equation as a differential equation for X, the principal part is given by
the terms of third order appearing on the right hand side. Since the equation
is an identity, holding for all vector fields, these terms must cancel. It follows
that the expressions ξμ Xν + ξν Xμ are in the kernel of the principal symbol
of the linearized and thus also of the non-linear Ricci operator.

For the further discussion it will be convenient to use coordinates related
to a given hypersurface. For simplicity and since it is the case of most interest
to us, we will assume the latter to be spacelike and denote it by S. Let T be
a non-vanishing time flow vector field transverse to S (but not necesssarily
timelike) and t = x0 a function with {t = 0} = S and < dt, T > = 1.
We choose local coordinates xa, a = 1, 2, 3, on S and extend them to a
neighbourhood of S such that < dxa, T > = 0. In these coordinates T = ∂t

and the metric has the ADM representation

g = −(αd t)2 + hab (βa d t + d xa) (βb d t + d xb), (2.6)

where h = hab d xa d xb represents the induced Riemannian metric on the slice
S. To ensure the non-degeneracy of the metric we assume the lapse function
α to be positive. We write β = βμ ∂μ = βa ∂a for the shift vector field, which
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is tangent to the time slices. We assume further that the metric h induced on
the time slices is Riemannian and we denote its contravariant form by hab,
so that hab hbc = δa

c.
The (future-directed) unit normal to the time slices is given by nμ =

1
α (δμ

0 − βμ), whence nμ = −α δ0
μ. We write hμ

ν = gμ
ν + nμ nν for

the orthogonal projector onto the time slices, hμν = gμν + nμ nν for the 4-
dimensional representation of the interior metric on the time slices, and use
g to perform index shifts. The second fundamental form (extrinsic curvature)
of the time slices is given by

χμν ≡ hμ
λ hν

ρ ∇λ nρ =
1
2
hμ

λ hν
ρ Ln gλρ =

1
2
Ln hμν .

For tensor fields tμ . . .ν intrinsic to the time slices, i.e. having vanishing con-
tractions with n, the h-covariant derivative D on a fixed time slice is given
by

Dρ tμ . . .ν = hλ
ρ hφ

μ . . . hψ
ν ∇λ tφ . . .ψ .

Finally, we write n(f) = nμ ∂μ f , note that aμ = nν ∇ν nμ = Dμ log(α),
and use the coefficients γμ

ν
ρ = Γλ

η
π hλ

μ hν
η hπ

ρ which represent the co-
variant derivative D in the sense that the components γa

b
c are the Christof-

fel symbols of the metric hab. The connection coefficients of gμν can then be
written

Γμ
ν

ρ = nμ nν nρ n(log α) + nμ aν nρ − aμ nν nρ − nμ nν aρ (2.7)

+nμ nρ
1
α

βν
,π nπ − nμ

1
α

βν
,π hπ

ρ − nρ
1
α

βν
,π hπ

μ

+nν χμρ − nμ χν
ρ − χμ

ν nρ + γμ
ν

ρ.

2.2 The Constraints

To isolate the geometrically relevant information contained in the Cauchy
data, we reduce the coordinate freedom tranverse to S by assuming T to be
a geodesic unit vector field normal to S. The metric then takes the form

g = −d t2 + hab d xa d xb, (2.8)

and the pull-back of the second fundamental to the time slices is given by

χab =
1
2
∂t hab. (2.9)

Expressions (2.8) and (2.9) suggest that the essential Cauchy data for the
metric field are given by the induced metric hab and the second fundamental
form χab on the spacelike hypersurface S. Since coordinate transformations
are unrestricted, the n inner relations induced on general Cauchy data on a
spacelike hypersurface S must be conditions on the essential Cauchy data.
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If we contract the covector ξ, which corresponds in our context to the
normal n of S, with the principal symbol of the Einstein tensor Gμν = Rμν −
1
2 Rgμν and evaluated on k, we get

ξμ

(
(σ · k)μν −

1
2
gμν gλρ (σ · k)λρ

)
= 0.

This identity indicates the combinations of the equations which contain only
derivatives of first order in directions transverse to S. Indeed, if we express
the equations

0 = ZH ≡ nμ nν (Gμν + λ gμν − κTμν),

0 = ZM
ν ≡ nμ hν

ρ (Gμρ + λ gμρ − κTμρ),

on S in terms of h and χ, write ρ = nμ nν Tμν , jν = −nμ hρ
ν Tμρ, and pull-

back to S, we get the constraint equations on spacelike hypersurfaces, i.e. the
Hamiltonian constraint

0 = 2ZH = r − χab χab + (χa
a)2 − 2λ− 2κ ρ, (2.10)

and the momentum constraint

0 = ZM
b = Da χb

a −Db χa
a + κ jb, (2.11)

where r denotes the Ricci scalar and D the connection of h.
These equations have the following geometric meaning. On a spacelike

hypersurface S the curvature tensors Rμ
νρη and rμ

νρη of g and h respectively
and the second fundamental form χμν are related, irrespective of any field
equation, by the Gauss equation

rμ
νρη = hμ

λ Rλ
πφψ hπ

ν hφ
ρ hψ

η − χμ
ρ χνη + χμ

η χνρ (2.12)

and the Codazzi equation

Dμ χνη −Dν χμη = −nλ Rλ
πφψ hπ

η hφ
μ hψ

ν . (2.13)

The constraint equations follow from (2.12) and (2.13) by contractions, the
use of the field equations, and pull-back to S. Thus the constraints represent
the covariant condition for the isometric embeddibility of an initial data set
(S, hab, χab, ρ, ja) into a solution of the Einstein equations.

We note here that the constraints (2.10) and (2.11), which are analogues
of the constraints of Maxwell’s equations, have important physical conse-
quences. One of the most important of these is the positivity of the mass
which can be associated with an asymptotically flat initial data set (subject
to reasonable conditions) [82], [94].
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2.3 The Bianchi Identities

Before analysing the structure of the field equations further, we note some
important identities. The Riemann tensor Riem[g] of the metric g, given by

Rμ
νλρ = ∂λ Γρ

μ
ν − ∂ρ Γλ

μ
ν + Γλ

μ
δ Γρ

δ
ν − Γρ

μ
δ Γλ

δ
ν , (2.14)

where Γρ
μ

ν denotes the Christoffel symbols of gμν , has the covariance prop-
erty

Riem[φ∗(g)] = φ∗(Riem[g]),

where φ denotes a diffeomorphism of M into itself. Two important identities
are a direct (cf. [64]) consequence of this, the first Bianchi identity

Rμ
λνρ + Rμ

ρλν + Rμ
νρλ = 0, (2.15)

and the second Bianchi identity

∇μ Rγ
λνρ +∇ρ Rγ

λμν +∇ν Rγ
λρμ = 0. (2.16)

The latter implies the further identities

∇μ Rμ
νλρ = ∇λ Rνρ −∇ρ Rνλ, (2.17)

∇μ Rμν −
1
2
∇νR = 0. (2.18)

The second Bianchi identity will serve us two quite different purposes.
Firstly, it will allow us to resolve certain problems arising from the degeneracy
of the principal symbol considered above (it is the integrability condition
which allows us to show the propagation of suitably chosen gauge conditions
and the preservation of the constraints). Secondly, it will provide us with
alternative representations of the field equations.

2.4 The Evolution Equations

In this section we shall discuss a few basic ideas about the evolution problem.
Our observations about the constraints and the decomposition of

Zμν ≡ Gμν + λ gμν − κTμν ,

given by
Zμν = ZS

μν − nν ZM
μ − nμ ZM

ν + nμ nν ZH , (2.19)

with ZS
μν = hμ

λ hρ
ν Zλρ, suggest that the basic information on the evolution

equations should be contained in

ZS
μν = 0,
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or any combination of it with the constraints. To obtain simple expressions
in terms of the field hμν and the second fundamental form χμν , defined by
the generalization

LT hμν = 2αχμν + Lβ hμν , (2.20)

of (2.9), we consider the equation

0 = ZS
μν −

1
2
hμν (hλρ ZS

λρ − ZH) (2.21)

=
1
α

(LT χμν − Lβ χμν −Dμ Dν α) + rμν + χρ
ρ χμν − 2χρμ χν

ρ

−λhμν − κhμ
ρ hν

λ (Tρλ −
1
2
T gρλ).

Together with (2.20) it should be regarded as an evolution equation for the
fields hμν , χμν .

It then appears natural to analyse the general solution of the Einstein
equations by the following procedure: Find initial data, i e. a solution hab,
χab of the constraints, on the slice S = {t = 0}. Then find the solution hab,
χab of the equations

∂t hab = 2αχab + Lβ hab, (2.22)

∂t χab = −α (rab + χc
c χab − 2χac χb

c) (2.23)

+Da Db α + Lβ χab + α (λhab + κ (Tab −
1
2
T hab)),

equivalent to (2.20) and (2.21), which induces these data on S. The first
step will not be considered further in this article; we shall give some relevant
references on the problem of solving the constraint equations in Sect. 6. Here
we want to comment on the second step, which raises several questions.

i) What determines the functions α, βa? Is it possible to prescribe them,
at least locally near S, as arbitrary functions α = α(t, xc), βa = βa(t, xc) of
the coordinates, possibly with the restriction α2 − βc βc > 0, which would
make ∂t timelike? We could give a positive answer to this question, if, starting
from a representation of the metric (2.6) in terms of some coordinate system
xμ′

with t′ = x0′
= 0 on S, we could always find a coordinate transformation

t = t(xμ′
), xa = xa(xμ′

) with t(0, xa′
) = 0, which casts the metric into the

desired form, i.e. achieves

− 1
α2(t, xc)

= g00 = gμ′ν′
(xλ′

) t,μ′ t,ν′ , (2.24)

1
α2(t, xc)

βa(t, xc) = g0a = gμ′ν′
(xλ′

) t,μ′ xa
,ν′ . (2.25)

If the left hand side of the first equation only depended on t and xμ′
, the

standard theory of first order PDE’s for a single unknown could be applied
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to this equation and second equation would essentially reduce to an ODE.
However, in general this theory does not apply, because the dependence of
the function α on xa introduces a coupling to the second equation.

ii) Suppose we could prescribe lapse and shift arbitrarily. Could we then
show the existence of a (unique) solution hab, χab of the initial value prob-
lem for the equations (2.22) and (2.23) (possibly coupled to some matter
equations)?

iii) Suppose we could answer the last question positively, would the re-
sulting solution to (2.22) and (2.23) then satisfy the constraints (2.10) and
(2.11) on the slices {t = const.}? Only then would we know that the metric
gμν , obtained from our fields hab, χab, α βc by (2.6), is a solution of the
Einstein equations.

We can answer question (iii) as follows. Suppose equation (2.21) is satisfied
on a set M =] − a, c[×S, with a, c > 0, and the solution induces the given
data on {0}×S, which we assume to be identified with S in the obvious way.
Since (2.21) is equivalent to ZS

μν − hμν ZH = 0, we can write on M by (2.19)

Gμν + λ gμν − κTμν = −nν ZM
μ − nμ ZM

ν + {2nμ nν + gμν}ZH .

Taking the divergence, using the contracted Bianchi identity (2.18), assuming
that the matter field equations have been given such as to ensure ∇μ Tμν = 0,
and splitting into normal and tangential parts, we get the equations

nμ ∇μ ZH − hμν Dμ ZM
ν = 2ZM

ν nμ ∇μ nν − 2ZH ∇μ nμ,

nμ ∇μ ZM
ν −Dν ZH = −ZM

μ ∇μ nν − ZM
ν ∇μ nμ

+ZM
ρ nν nμ ∇μ nρ + 2ZH nμ ∇μ nν ,

which imply subsidiary equations, satisfied by ZH and ZM
a ,{( 1

α 0
0 1

α hac

)
∂0 +

(
− 1

α βd −hcd

−had − 1
α hac βd

)
∂d

} (
ZH

ZM
c

)
=

(
h
ha

)
, (2.26)

where h, ha denote linear functions of ZH , ZM
a . Since it is a system for

v = t(ZH , ZM
c ) of the form

Aμ ∂μ v + B v = 0,

with symmetric matrices Aμ and a positive definite matrix A0 , it is symmetric
hyperbolic (cf. Sect. 3.1). Moreover, it has characteristic polynomial

det(Aμ ξμ) = −det(hab) (nρ ξρ)2 gμνξμ ξν , (2.27)

which implies that its characteristics are hypersurfaces which are timelike or
null with respect to the metric gμν .

Consequently, if S′ = {φ = 0, φ,μ �= 0} ⊂ M , with φ ∈ C∞(M), is
a spacelike hypersurface, the matrix Aμ φ,μ is positive definite on S′. Sup-
pose S′, S′′ are two spacelike hypersurfaces which intersect at their common
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2−dimensional boundary Z and bound a compact ‘lens-shaped region’ in M .
Then it follows from the discussion of symmetric hyperbolic systems in Sect.
3.1 that the fields ZH , ZM

c must vanish on S′′ if they vanish on S′.
To make a precise statement about the consequences of this property,

we need the important notion of the domain of dependence. Let us assume
that there is given a time orientation on (M, g). If U is a closed subset of
M we define the future (past) domain of dependence of U in M as the set of
points x ∈ M such that any g−non-spacelike curve in M through x which is
inextendible in the past (future) intersects U . We denote this set by D+(U)
(resp. D−(U)).

It can be shown that the result about lens-shaped regions referred to above
and the fact that the fields ZH , ZM

c vanish on S imply that ZH and ZM
c ,

whence also ZM
μ , vanish on the domain of dependence D(S) = D+(S)∪D−(S)

of S in M . This shows the preservation of the constraints under the evolution
defined by equations (2.22) and (2.23) and the prescribed lapse and shift.

Questions (i), (ii) are more delicate. Let us assume that the coefficients
gμ′ν′

(xλ′
) are real analytic functions for xλ′

in an open subset V of R
4 with

V ∩{x0′
= 0} �= ∅, and that α > 0 and βc are real analytic functions of t and

xa. Then equations (2.24) and (2.25) can be written in the form

t,0′ = F1(t, xa, t,c′ , xa
,c′ , xμ′

), xa
,0′ = F2(t, xa, t,c′ , xa

,c′ , xμ′
),

with functions F1, F2 which are real analytic for (t, xa, t,c′ , xa
,c′ , xμ′

) ∈ R
16×

V . Thus, by the theorem of Cauchy–Kowalewskaya (cf. [30]), the differential
problem considered in question (i) can be solved in a neighbourhood of the set
{x0′

= 0} ⊂ V . Using the covariance of equations (2.24), (2.25), it follows that
given a real analytic Lorentz space (M, g), an analytic spacelike hypersurface
S in M with coordinates xa on S, and analytic functions α = α(t, xc) > 0,
βa = βa(t, xc) there exist unique real analytic coordinates t, xa on some
neighbourhood of S in M such that t = 0 on S and the lapse and shift in the
expression of g in these coordinates are given by α and βa.

Assume now that the 3−manifold S, the initial data hab, χab solving the
constraints on S, as well as the functions α(t, xc) > 0, βa(t, xc) are real
analytic and assume for simplicity that Tμν = 0. Then we can derive from
(2.22) and (2.23) a differential system for u = (hab, kabc ≡ hab,c, χab) of
the form ∂t u = H(u, t, xa) with a function H which is real analytic where
det(hab) �= 0. Again the theorem of Cauchy–Kowalewskaya tells us that this
system, whence also (2.22) and (2.23), has a unique real analytic solution on
R× S near {0}× S for the data which are given on {0}× S after identifying
the latter in the obvious way with S. By our discussion of (iii) we know that
we thus obtain a unique analytic solution to the full Einstein equations.

It should be noted that the solution obtained in this way depends a priori
not only on the data but also on the chosen lapse and shift. That the latter
do in fact only affect the coordinate representation of the solution can be seen
as follows. Given another set of analytic functions α′(t′, x

′c) > 0, β
′a(t′, x

′c),
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we can either find, as remarked above, a coordinate transformation t → t′,
xa → x

′a such that the given metric has the new values of lapse and shift in
the new coordinates , or we can deal with the initial value problem for (2.22)
and (2.23) with the new lapse and shift. However, due to the uniqueness of
this solution it must coincide with the first solution in its new coordinate
representation.

It is a remarkable fact that in the course of solving the Einstein equations
we can prescribe rather arbitrarily four functions α, βa (in the analytic case)
which are considered first as functions on some abstract R

4 but which, once
the solution has been constructed, acquire the meaning of lapse and shift for
the coordinate expression of the metric. Since the coordinates in which they
have this meaning are defined by α, βa implicitly (via the field equations),
we refer to these functions as the gauge source functions of our procedure
(we shall see below that, depending on the chosen equations, quite different
objects can play the role of gauge source functions) and to the act of pre-
scribing these functions as imposing a gauge condition. The considerations
above show also that the manifold on which the solution is constructed must
be regarded as part of the solution. The transition functions relating the dif-
ferent coordinates we have considered, as well that the domains of definition
of these coordinate systems themselves, are determined by the gauge source
functions, the field equations, and the initial data.

We have seen that in the case where the data and the given lapse and shift
are real analytic, we can answer our questions in a satisfactory way. However,
the assumption is not satisfactory. This is not meant to say anything against
analytic solutions. In fact, most of the ‘exact solutions’ which are the source
of our intuition for general relativistic phenomena are (piecewise) analytic.
However, we should not restrict to analyticity in principle. One reason is that
it would be in conflict with one of the basic tenets of general relativity. Given
two non-empty open subsets U , V of a connected space-time (M, g) such
that no point of U can be connected by a causal curve with a point of V , any
process in U should be independent of what happens in V . However, if the
space-time is analytic, the field in V is essentially fixed by the behaviour of g
in U . For instance, we would not be able to study the evolution of data hab,
χab on a 3−manifold S where hab is conformally flat in some open subset of
S but not in another one.

Therefore, Einstein’s equations should allow us to discuss the existence
and uniqueness of solutions, and also the continuous dependence of the lat-
ter on the data (stability), in classes of functions which are C∞ or of even
lower smoothness. In other words, Einstein’s equations should imply evo-
lution equations for which the Cauchy problem is well posed (cf. [45], [49],
[91]). Whether an initial value problem is well posed cannot be decided on the
level of analytic solutions and with the methods used to prove the Cauchy–
Kowalewskaya theorem. On this level there is no basic distinction between
initial value problems based on spacelike and those based on timelike hy-
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persurfaces, though in the latter case the stability property is known not to
be satisfied. Thus we are led to search for evolution equations which satisfy
some ‘hyperbolicity condition’, i.e. a condition (essentially) on the algebraic
structure of the equations which entails the well-posedness of the Cauchy
problem.

A number of different hyperbolicity conditions are known, all of them
having in common that they require the equations to admit at each point a
maximal number of ‘real’ characteristics: if the equations have a local ex-
pression of the form (2.3), then the operator P is hyperbolic at x ∈ U
only if there is a covector ζ ∈ T ∗

x M \ {0} such that every 2−dimensional
plane in the cotangent space T ∗

x M containing ζ intersects the conormal cone
{det(∑|α|=m Aα ξα) = 0} in k × m real lines (counting multiplicities) (cf.
[27]). But notice that this condition alone does not ensure the well-posedness
of the Cauchy problem. Some further remarks about different notions of hy-
perbolicity can be found in Sect. 3.3.

To analyse the situation in the case of (2.22) and (2.23), we solve (2.22)
for χab and insert into (2.23) to obtain a system of second order for hab which
takes the form

1
α2 {∂

2
t hab − βc ∂c ∂t hab − βc ∂t ∂c hab + βc βd ∂c ∂d hab} (2.28)

−hcd (∂c ∂d hab + ∂a ∂b hcd − ∂a ∂c hbd − ∂b ∂c had)

− 2
α

∂a ∂b α− 2
α

(
hc(a ∂b) ∂t β

c − βd hc(a ∂b) ∂d βc
)

= terms of lower order in hab, α, βc.

To analyse the characteristic polynomial, we have to know how α and βc

are related to the solution hab. Suppose, for simplicity, that α and βc are
given functions.. Then we have to calculate for given covector ξμ �= 0 the
determinant of the linear map

kab �→ k̄ab = −gμν ξμ ξν kab − hcd kcd ξa ξb + 2 ξc kc(a ξb),

of symmetric tensors, where we set ξa = hab ξb. Denoting by A′(ξ) the linear
transformation which maps the independent components kab, a ≤ b, onto the
k̄ab, a ≤ b, we find

det A′(ξ) = −(nμ ξμ)6 (gμν ξμ ξν)3.

Thus, if we consider lapse and shift as given, the conormal cone of system
(2.28) satisfies the condition required by hyperbolicity. Moreoever, the char-
acteristics are timelike or null as one would expect for the evolution equations
of a theory which is founded on the idea that physical processes propagate
on or inside the light cone of the metric field.

However, in spite of the fact that these equations have been used for a
long time and in various contexts, and in spite of the naturality of equation
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(2.23) which appears to be indicated by the hyperbolicity of the subsidiary
equations, it is not known whether the Cauchy problem for equations (2.28)
is well posed. It appears that we need to make use of the constraint equations
to obtain suitable evolution equations.

Therefore we proceed along a different route. While the form of the con-
straint equations induced on a given hypersurface is unique, there is a huge
freedom to modify our evolution equations. We can try to bring the principal
part of (2.28) into a suitable form by using the constraints, by assuming lapse
and shift to be functionals of the metric, or by subjecting them to some equa-
tions. Then gauge source functions of quite a different nature may appear.
Our choice in this section is motivated by the following two observations ([65],
[16], cf. also [36]):

(i) Suppose S is some spacelike hypersurface of some Lorentz space (M, g)
and xa are coordinates on some open subset U of S. Let Fμ′

= Fμ′
(xν′

) be
four smooth real functions defined on R

4. Then there exist coordinates xν′

on some neighbourhood of U in M with x0′
= 0, xa′

= xa on U and such
that the Christoffel coefficients of g in these coordinates satisfy the relations
Γμ′

(xν′
) = Fμ′

(xν′
), where Γμ′

= gλ′ρ′
Γλ′ μ′

ρ′ .
Obviously, one can construct coordinates xν′

on some neighbourhood of U
by solving Cauchy problems for the semi-linear wave equations ∇μ ∇μ xν′

=
−Fμ′

(xρ′
) with Cauchy data on U which are consistent with our require-

ments. When the wave equations are expressed in these coordinates the re-
lations above result.

(ii) The 4−dimensional Ricci tensor can be written in the form

Rμν = −1
2
gλρ gμν,λρ +∇(μΓν) (2.29)

+Γλ
η

μ gηδ gλρ Γρ
δ

ν + 2Γδ
λ

η gδρ gλ(μ Γν)
η

ρ,

where we set

Γν = gνμ Γμ, ∇μΓν = ∂μΓν − Γμ
λ

ν Γλ.

Thus, if we consider the Γν as given functions, the Einstein equations take
the form of a system of wave equations for the metric coefficients.

Before we show that these observations lead to a short and elegant argu-
ment for the well-posedness of the initial value problem for Einstein’s equa-
tions (assuming well behaved matter equations), we indicate how the form of
equations (2.29) relates to our previous considerations.

From the expressions (2.7) we get the relations

∂t α− α,a βa = α2 (χ− nνΓ
ν), (2.30)

∂t β
a − βa

,b βb = α2 (γa −Da log α− ha
ν Γ ν), (2.31)
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which indicate that prescribing the functions Γ ν may fix the evolution of
lapse and shift. Writing the 3−Ricci tensor similarly to (2.29)

rab = −1
2
hcd hab,cd + D(aγb) + γc

d
a hfd hce γe

f
b + 2 γc

d
e hcf hd(a γb)

e
f ,

with
γa = hab γb = hab hcd γc

b
d = hcd (hac,d −

1
2
hcd,a), (2.32)

we obtain (2.28) in the form

1
α2 (∂2

t hab − 2hab,tc βc + hab,cd βc βd)− hcd hab,cd

− 2
α2 D(a

[
hb)c (∂t β

c − βd ∂d βc)
]
+ 2D(aγb) − 2Da Db log α

= terms of lower order in hab, α, βc.

Using (2.31) to replace the terms of second order in the second line, we get

−gμν hab,μν = −2D(a{hb)c hc
μ Γμ} (2.33)

+
2
α2

{
Da αDb α + χab (∂t α− Lβ α) + 2D(aαhb)c (∂tβ

c − βc
,d βd)

+2βc
,(a hb)c,t + hc(a βd

,b) β
c

,d − βd
,(a Lβ hb)d

}
+2

{
2χac χb

c − χc
c χab − γc

d
a hfd hce γe

f
b

−2 γc
d

e hcf hd(a γb)
e

f + λhab + κ (Tab −
1
2
T hab)

}
,

which can be read as a wave equation for hab. From (2.30) and (2.22) we get

1
α2 (∂t − βc ∂c)2 α = (∂t − βc ∂c)χ + 2αχ2 − 5α2 χnνΓ

ν (2.34)

+3α3 (nνΓ
ν)2 − α (∂t − βc ∂c) (nνΓ

ν).

Taking the trace of (2.23) and using (2.22) and the Hamiltonian constraint
(2.10), we get

(∂t − βc ∂c)χ = Da Da α− α

{
χab χab − λ + κ

1
2

(ρ + hab Tab)
}

, (2.35)

whence, using (2.34), the wave equation

1
α2 (∂t − βc ∂c)2 α−Da Da α = −α

{
χab χab − λ (2.36)

+κ
1
2

(ρ + hab Tab) + 5αχnνΓ
ν − 3α2 (nνΓ

ν)2 + (∂t − βc ∂c) (nνΓ
ν)

}
.
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From (2.32), (2.22), and the momentum constraint (2.11) follows

(∂t − βc ∂c) γa = hcd βa
,cd + αDaχ + 2ακ ja (2.37)

+2χac Dcα− χDaα− 2αχcd γc
a

d − βa
,c γc,

which implies together with (2.30), (2.31), and (2.22) the wave equation

1
α2 (∂t − βc ∂c)2 βa − hcd βa

,cd = 2ακ ja (2.38)

+4 (χac − χhac)Dcα− 2α (χbc − χhbc) γb
a

c − βa
,c γc + βa

,c Dc log α

−2αnν Γ ν (γa −Da log α− ha
ν Γ ν)− 2αχha

ν Γ ν

+Da(αnν Γ ν)− (∂t − βc ∂c)(ha
ν Γ ν).

Equations (2.33), (2.36), and (2.38) form a hyperbolic system for the fields
hab, α, βa if we consider the functions Γμ as given. We note that besides
(2.23) we used the constraints as well as (2.7) to derive this system.

We return to the evolution problem. Suppose we are given smooth data
hab, χab, ρ, ja, i. e. a solution of the constraints, on some 3−dimensional
manifold S, which, for simplicity, we assume to be diffeomorphic to R

3 and
endowed with global coordinates xa. Following our previous considerations,
we set M = R×S, denote by t = x0 the natural coordinate on R and extend
the xa in the obvious way to M . We embed our initial data set into M by
identifying S diffeomorphically with {0} × S (the need for this embedding
shows that it is in general not useful to restrict the choice of the coordinates
xa).

We now choose four smooth real functions Fμ(xλ) on M which will be
assigned the role of gauge source functions in the following procedure. As sug-
gested by (2.29) and the preceeding discussion, we study the Cauchy problem
for the reduced equations

−1
2
gλρ gμν,λρ +∇(μ Fν) + Γλ

η
μ gηδ gλρ Γρ

δ
ν (2.39)

+2Γδ
λ

η gδρ gλ(μ Γν)
η

ρ = −λ gμν + κ (Tμν −
1
2
T gμν).

Since we do not want to get involved in this section with details of the mat-
ter equations, we assume the Cauchy problem for them to be well posed
and the energy-momentum tensor to be divergence free as a consequence of
these equations (one of the remarks following formula (4.70) shows that the
situation can be occasionally somewhat more subtle).

To prepare Cauchy data for (2.39), we choose on S a smooth positive
lapse function α and a smooth shift vector field βa, which determine with
the datum hab the ADM representation (2.6) for gμν on S. Using now hab,
χab, α, βa in equations (2.30), (2.31) (with Γ ν replaced by gνμ Fμ), and
(2.22), we obtain the corresponding datum ∂t gμν on S.
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It will be shown in Sect. 5 that the Cauchy problem for (2.39) and the
initial data above is well posed. Thus there exists a smooth solution gμν to it
on some neighbourhood M ′ of S. To assure uniqueness, we assume that M ′

coincides with the domain of dependence of S in M ′ with respect to gμν .
With the functions Γμ calculated from gμν , the reduced equation (2.39)

takes the form

Gμν + λ gμν − κTμν = ∇(μ Dν) −
1
2
gμν ∇ρ Dρ

with Dμ = Γμ − Fμ. To see that our gauge conditions are preserved under
the evolution defined by (2.39) and our gauge source functions, we show that
Dμ = 0 on M ′.

Using the Bianchi identity (2.18) and our assumptions on the matter equa-
tions, we get, by taking the divergence of the equation above, the subsidiary
equation

∇μ ∇μ Dν + Rμ
ν Dμ = 0.

Since we used (2.30) and (2.31) to determine the initial data, we know that
Dμ = 0 on S. Moreover, equations (2.36)and (2.38) may be used, on the one
hand, to calculate ∂t Γμ from gμν , but they are, on the other hand, contained
in (2.39), with Γμ replaced by Fμ. This implies that ∂t Dμ = 0 on S. Using the
uniqueness property for systems of wave equations discussed in Sect. 5.1, we
conclude that Dμ vanishes on M ′ and gμν solves indeed Einstein’s equations
(2.1) on M ′.

We refer to the process of reducing the initial value problem for Einstein’s
equations to an initial value problem of a hyperbolic system as a hyperbolic
reduction. The argument given here was developed for the first time in [16]
with the ‘harmonicity assumption‘ Γμ = 0. We prefer to keep the complete
freedom to specify the gauge source functions, because some important and
complicated problems are related to this. Our derivation of the system (2.33),
(2.36), (2.38) illustrates the intricate relations between equation (2.23), the
constraints, and the conservation of the gauge condition in our case. Though
other such arguments may differ in details, the overall structure of all hyper-
bolic reduction procedures are similar.

2.5 Assumptions and Consequences

If one wants to investigate single solutions or general classes of solutions
to the Einstein equations by an abstract analysis of the hyperbolic reduced
equations, there are certain properties which need to be ‘put in by hand’ and
others which are determined by the field equations.

The properties in the first class depend largely on the type of physical
systems which are to be modelled and on the structure of the hypersurface
on which data are to be prescribed. The latter could be spacelike everywhere
as in the Cauchy problem considered above. One may wish in this case to
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consider cosmological models with compact time slices, one of which is the
initial hypersurface, one may wish to model the field of an isolated system,
in which case the initial hypersurface should include a domain extending to
infinity with the field satisfying certain fall-off conditions, or one may wish
to consider initial hypersurfaces with ‘inner boundaries’ whose nature may
depend on various geometrical and physical considerations. Other cases of
interest are the ‘initial-boundary value problem’(cf. Sect. 4.3), where data
are given on a spacelike and a timelike hypersurface which intersect in some
spacelike 2-surface, the ‘characteristic initial value problem’ where data are
given on two null hypersurfaces which intersect in some spacelike two-surface,
or various other combinations of hypersurfaces. Finally, we have to make
a choice of matter model which may introduce specific problems which are
independent of the features of Einstein’s equations considered above. All these
considerations will affect the problem of finding appropriate solutions to the
corresponding constraint equations and the nature of this problem depends
to a large extent on the nature of the bounding hypersurface. We note that
the fall-off behaviour of the data on spacelike hypersurfaces can only partly
be specified freely, other parts being determined by the constraint equations.

There are conditions which we just assume because we cannot do better.
For instance, one may wish to analyse solutions which violate some basic
causality conditions (cf. [52]) or which admit various identifications in the
future and past of the initial hypersurface. Such violations or identifications
introduce compatibility conditions on the data which cannot be controlled
locally. At present there are no techniques available to analyse such situations
in any generality. In the context of the Cauchy problem we shall only consider
solutions (M, g) of the Einstein equations which are globally hyperbolic and
such that the initial hypersurface S is a Cauchy hypersurface of the solution,
i.e. every inextendible non-spacelike curve in M intersects S exactly once
[52].

The class of properties which need to be inferred from the structure of
the data and the field equations includes in general everything which has to
do with the long time evolution of the field: the development of singularities
and horizons or of asymptotic regimes where the field becomes in any sense
weak and possibly approximates the Minkowski field. This does not, of course,
preclude the possibility of making assumptions on the singular or asymptotic
behaviour of the field and analysing the consistency of these assumptions
with the field equations. But in the end we would like to characterize the
long time behaviour of the field in terms of the initial data.

3 PDE Techniques

3.1 Symmetric Hyperbolic Systems

In order to obtain results on the existence, uniqueness and stability of solu-
tions of the Einstein equations it is necessary to make contact with the theory
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of partial differential equations. A good recent textbook on this theory is [32].
One part of the theory which can usefully be applied to the Einstein equations
is the theory of symmetric hyperbolic systems. This will be discussed in some
detail in the following. The aim is not to give complete proofs of the results of
interest in general relativity, but to present some arguments which illustrate
the essential techniques of the subject. It is important to note that the use of
symmetric hyperbolic systems is not the only way of proving local existence
and uniqueness theorems for the Einstein equations. The original proof [16]
used second order hyperbolic equations. Other approaches use other types
of equations such as mixed hyperbolic-elliptic systems (see, e.g. [25], Chap.
10). The basic tools used to prove existence are the same in all cases. First
a family of approximating problems is set up and solved. Of course, in order
that this be helpful, the approximating problems should be easier to solve
than the original one. Then energy estimates, whose definition is discussed
below, are used to show that the solutions of the approximating problems
converge to a solution of the original problem in a certain limit.

Now some aspects of the theory of symmetric hyperbolic systems will be
discussed. We consider a system of equations for k real variables which are
collected into a vector-valued function u. The solution will be defined on an
appropriate subset of R×R

n. (The case needed for the Einstein equations is
n = 3.) A point of R×R

n will be denoted by (t, x). The equations are of the
form:

A0(t, x, u)∂tu + Ai(t, x, u)∂iu + B(t, x, u) = 0

This system of equations is called symmetric hyperbolic if the matrices A0

and Ai are symmetric and A0 is positive definite. This system is quasi-linear,
which means that it is linear in its dependence on the first derivatives. The
notion of symmetric hyperbolicity can be defined more generally, but here
we restrict to the quasi-linear case without further comment. It is relatively
easy to prove a uniqueness theorem for solutions of a symmetric hyperbolic
system and so we will do this before coming to the more complicated existence
proofs. A hypersurface S is called spacelike with respect to a solution u of
the equation if for any 1-form nα conormal to S (i.e. vanishing on vectors
tangent to S) the expression Aα(t, x, u)nα is positive definite. This definition
has a priori nothing to do with the usual sense of the word spacelike in general
relativity. However, as will be seen below, the two concepts are closely related
in some cases. Define a lens-shaped region to be an open subset G of R×R

n

with compact closure whose boundary is the union of a subset S0 of the
hypersurface t = 0 with smooth boundary ∂S0 and a spacelike hypersurface
S1 with a boundary which coincides with ∂S0. It will be shown that if G
is a lens-shaped region with respect to solutions u1 and u2 of a symmetric
hyperbolic system and if the two solutions agree on S0 then they agree on all
of G. This statement is subject to differentiability requirements.

Consider a symmetric hyperbolic system where Aα and B are C1 functions
of their arguments. Let u1 and u2 be two solutions of class C1. Let G be a
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lens-shaped region with respect to u1 and u2 whose boundary is the union
of hypersurfaces S0 and S1 as before. There exist continuous functions Mα

and N such that:

Aα(t, x, u1)−Aα(t, x, u2) = Mα(t, x, u1, u2)(u1 − u2)
B(t, x, u1)−B(t, x, u2) = N(t, x, u1, u2)(u1 − u2)

This sharp form of the mean value theorem is proved for instance in [50]. It
follows that:

Aα(u1)∂α(u1 − u2) + [Mα(u1, u2)(∂αu2) + N(u1, u2)](u1 − u2) = 0

Here the dependence of functions on t and x has not been written out explic-
itly. This equation for u1 − u2 can be abbreviated to

Aα(u1)∂α(u1 − u2) = Q(u1 − u2)

where Q is a continuous function of t and x. It follows that

∂α(〈e−ktAα(u1)(u1 − u2), u1 − u2〉)
= e−kt〈[−kA0(u1) + (∂αAα)(u1) + 2Q](u1 − u2), u1 − u2〉

for any constant k. Now apply Stokes’ theorem to this on the region G. This
gives an equation of the form I1 = I0 + IG where I0, I1 and IG are integrals
over S0, S1 and G respectively. Because S1 is spacelike, I1 is non-negative.
If k is chosen large enough the matrix P = kA0(u1) − (∂αAα)(u1) − 2Q is
uniformly positive definite on G. This means that there exists a constant
C > 0 such that 〈v, P (t, x, u1)v〉 ≥ C〈v, v〉 for all v ∈ R

k and (t, x) in G.
Thus if u1 − u2 is not identically zero on G, then the volume integral IG

can be made negative by an appropriate choice of k. If u1 and u2 have the
same initial data then I0 = 0. In this case I0 + IG is negative and we get a
contradiction. Thus in fact u1 − u2 = 0.

This argument shows that locally in a neighbourhood of the initial hy-
persurface S the solution of a symmetric hyperbolic system at a given point
is determined by initial data on a compact subset of S. For any point near
enough to S is contained in a lens-shaped region. In this context we would like
to introduce the concept of domain of dependence for a symmetric hyperbolic
system. There are problems with conflicting terminology here, which we will
attempt to explain now. If a given subset E of S is chosen, then the domain
of dependence D̃(E) of E is the set of all points of R×R

n such that the value
of a solution of the symmetric hyperbolic system at that point is determined
by the restriction of the initial data to E. Comparing with the definition of
the domain of dependence for the Einstein equations given in Sect. 2.4 we
find a situation similar to that seen already for the term ‘spacelike’. The ap-
plications of the term to the Einstein equations and to symmetric hyperbolic
systems might seem at first to be completely unrelated, but in fact there is a
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close relation. This fact was already alluded to in Sect. 2.4. Even for hyper-
bolic equations there is another ambiguity in terminology. The definition for
symmetric hyperbolic systems conflicts with terminology used in some places
in the literature [27]. Often the set which is called domain of dependence
here is referred to as the domain of determinacy of E while E is said to be a
domain of dependence for a point p if p lies in what we here call the domain
of dependence. In the following we will never use the terminology of [27].
However, we felt it better to warn the reader of the problems than to pass
over them in silence.

The relationship of the general definition of the domain of dependence
for symmetric hyperbolic systems adopted in this article with the domain of
dependence in general relativity will now be discussed in some more detail.
As will be explained later, the harmonically reduced Einstein equations can
be transformed to a symmetric hyperbolic system by introducing the first
derivatives of the metric as new variables. The comparison we wish to make is
between the domain of dependence D̃(S) defined by this particular symmetric
hyperbolic system and the domain of dependence D(S) as defined in Sect. 2.4.
The first important point is that a hypersurface is spacelike with respect to
the symmetric hyperbolic system if and only if it is spacelike in the usual
sense of general relativity, i.e. if the metric induced on it by the space-time
metric is positive definite. Given this fact, we see that the notion of lens-
shaped region used in this section coincides in the case of this particular
symmetric hyperbolic system derived from the Einstein equations with the
concept introduced in Sect. 2.4.

The above uniqueness statement will now be compared for illustrative
purposes with the well-known uniquess properties of solutions of the wave
equation in Minkowski space. Here we see a simplified form of the situation
which has just been presented in the case of the Einstein equations. The wave
equation, being second order, is not symmetric hyperbolic. However, it can
be reduced to a symmetric hyperbolic system by introducing first derivatives
of the unknown as new variables in a suitable way. It then turns out that once
again the concept of a spacelike hypersurface, as introduced for symmetric
hyperbolic systems, coincides with the usual (metric) notion for hypersurfaces
in Minkowski space. It is well known that if initial data for the wave equation
is given on the hypersurface t = 0 in Minkowski space, and if p is a point in
the region t > 0, then the solution at p is determined uniquely by the data
within the intersection of the past light cone of p with the hypersurface t = 0.
Once the wave equation has been reduced to symmetric hyperbolic form this
statement can be deduced from the above uniqueness theorem for symmetric
hyperbolic systems. It suffices to note the simple geometric fact that any
point in the region t > 0 strictly inside the past light cone of p is contained
in a lens-shaped region with the same property. Thus the solution is uniquely
determined inside the past light cone of p and hence, by continuity, at p.
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The existence of the domain of dependence has the following consequence.
If two sets u0

1 and u0
2 of initial data on the same initial hypersurface S coincide

on an open subset U of S, then the corresponding domains of dependence
D̃1(U) and D̃2(U), as well as the corresponding solutions u1 and u2 on them,
coincide. In other words, on D̃1(U) the solution u1 is independent of the
extension of u0

1 outside U . It follows in particular that there is no need to
impose boundary conditions or fall-off conditions on u1 ’on the edge of S’ or
some periodicity condition to determine the solution locally near a point of
S. This is referred to as the localization property of symmetric hyperbolic
systems since it means that the theory is not dependent on knowing how
the initial data behave globally in space. In the following data on R

n will
be considered which are periodic in the spatial coordinates. This is equiv-
alent to replacing R

n as domain of definition of the unknown by the torus
Tn obtained by identifying the Cartesian coordinates in R

n modulo 2π. In
order to prove statements about solutions of a symmetric hyperbolic system,
something must be assumed about the regularity of the coefficients. This will
in particular imply that A0 is continuous. The continuity of A0 and the com-
pactness of the torus then show together that A0(t, x, u) is uniformly positive
definite on any finite closed time interval for any given continuous function
u defined on this interval.

The general strategy of the existence proof we will present here will now
be discussed in more detail. This proof is essentially that given in [90]. The
first detailed proof of an existence theorem for general quasi-linear symmetric
hyperbolic systems was given by Kato [60] using the theory of semigroups.
The proof here uses less sophisticated functional analysis, but the basic pat-
tern of approximations controlled by energy estimates is the same in both
cases. For simplicity we will restrict to the special case where A0 is the iden-
tity matrix. Once the proof has been carried out in that case the differences
which arise in the general case will be pointed out. Assuming now that A0 is
the identity, the equation can be written in the form:

∂tu = −Ai(t, x, u)∂iu−B(t, x, u)

This looks superficially like an ordinary differential equation in an infinite
dimensional space of functions of x. Unfortunately, this point of view is
not directly helpful in proving local existence. The essential point is that
if Ai(t, x, u)∂i is thought of as an operator on a space of functions of finite
differentiability, this operator is unbounded. The strategy is now to replace
the unbounded operator by a bounded one. In fact we even go further and re-
place the infinite dimensional space by a finite dimensional one. This is done
by the introduction of a mollifier (smoothing operator) at appropriate places
in the equation. The mollifier contains a parameter ε. The resulting family
of equations depending on ε defines the family of approximating problems
referred to above in this particular case. The approximating problems can be
solved using the standard theory of ordinary differential equations. It then
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remains to show that the solutions to the approximating problems converge
to a solution of the original problem as ε tends to zero.

A convenient mollifier on the torus can be constructed using the Fourier
transform. We now recall some facts concerning the Fourier transform on the
torus. If u is a continuous complex-valued function on Tn then its Fourier
coefficients are defined by:

û(ξ) =
∫

T n

u(x)e−i〈x,ξ〉dx

Here ξ is an element of Zn, i.e. a sequence of n integers. In fact this formula
makes sense for any square integrable function on the torus. It defines a lin-
ear mapping from the space L2(Tn) of complex square integrable functions
on the torus to the space of all complex-valued functions on Zn. Its image
is the space of square summable functions L2(Zn) and the L2 norm of u is
equal to that of û up to a constant factor. In particular the Fourier transform
defines an isomorphism of L2(Tn) onto L2(Zn). Thus to define an operator
on L2(Tn) it suffices to define the operator on L2(Zn) which corresponds to
it under the Fourier transform. These statements follow from the elementary
theory of Hilbert spaces once it is known that trigonometric polynomials (i.e.
finite linear combinations of functions of the form ei〈ξ,x〉) can be used to
approximate all continuous functions on the torus in the sense of uniform
convergence. This is worked out in detail for the case n = 1 in [80], Chap.
4. The case of general n is not much different, once the approximation prop-
erty of trigonometric polynomials is known in that context. This follows, for
instance, from the Stone–Weierstrass theorem ([81], p. 122).

Let φ be a smooth real-valued function with compact support on R
n which

is identically one in a neighbourhood of the origin and satisfies 0 ≤ φ(ξ) ≤ 1
for all ξ and φ(−ξ) = φ(ξ). For a positive real number ε let φε(ξ) = ε−nφ(ξ/ε).
If we identify Zn with the set of points in R

n with integer coordinates it is
possible to define functions φε on Zn by restriction. The mollifier Jε is defined
by

Ĵεu = φεû

for any square integrable complex-valued function u on the torus. It is a
bounded self-adjoint linear operator on L2(Tn). In fact ‖Jε‖ = 1 for all ε.
The symmetry condition imposed on φ ensures that if u is real, Jεu is also
real. Note that, for given ε, Ĵεu is only non-zero at a finite number of points,
the number of which depends on ε. It follows that Jεu is a trigonometric
polynomial and that the space of trigonometric polynomials which occurs for
fixed ε and all possible functions u is finite dimensional. As a consequence the
image of L2

R
(Tn), the subspace of L2(Tn) consisting of real-valued functions,

under the operator Jε is a finite dimensional space Vε. As ε tends to zero the
dimension of Vε tends to infinity and this is why these spaces can in a certain
sense approximate the infinite-dimensional space L2

R
(Tn).

The original problem will now be approximated by problems involving or-
dinary differential equations on the finite-dimensional spaces Vε. If the initial
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datum for the original problem is u0, the initial datum for the approximating
problem will be u0

ε = Jεu
0. The equation to be solved in the approximating

problem is:

∂tuε = −Jε[Ai(t, x, uε)Jε∂iuε + B(t, x, uε)] = F (uε) (3.1)

Here the unknown uε takes values in the vector space Vε. In order to ap-
ply the standard existence and uniqueness theory for ordinary differential
equations to this it suffices to check that the right hand side is a smooth
function of uε provided Ai and B are smooth functions of their arguments.
Let us first check that F is continuous. If un is a sequence of elements of Vε

which converges to u then Jε∂iun converges to Jε∂iu. The sequence of func-
tions Ai(t, x, un)Jε∂iun+B(t, x, un) converges uniformly to Ai(t, x, u)Jε∂iu+
B(t, x, u). To see that F is continous it remains to show that if vn → v uni-
formly Jεvn → Jεv. If vn → v uniformly then the convergence also holds
in the L2 norm. This implies that v̂n → v̂ in L2(Zn). Hence φεv̂n → φεv̂
pointwise. From this it can be concluded that Jεvn → Jεv. This completes
the proof of the continuity of F . Differentiability can be shown in a simi-
lar way. The main step is to show that if u and v are elements of Vε then
lims→0 s−1[Ai(t, x, u+sv)−Ai(t, x, u)] exists (in the sense of uniform conver-
gence). By smoothness of Ai it does exist and is equal to D3A(t, x, u)v, where
D3 denotes the derivative with respect to the third argument. In this way the
existence of the first derivative of F can be demonstrated and the explicit
expression for the derivative shows that it is continuous. Higher derivatives
can be handled similarly. Hence F is a smooth function from Vε to Vε. The
standard theory of ordinary differential equations now gives the existence of
a unique solution of the approximating problem for each positive value of
ε. Existence is only guaranteed for a short time Tε and at this point in the
argument it is not excluded that Tε could tend to zero as ε → 0. It will now
be seen that this can be ruled out by the use of energy estimates.

The basic energy estimate involves computing the time derivative of the
energy functional defined by

E =
∫

T n

|uε|2dx (3.2)

Since the functions uε are smooth and defined on a compact manifold differ-
entiation under the integral is justified.

dE/dt = 2
∫
〈uε, ∂tuε〉

= −2
∫
〈uε, Jε[AiJε∂iuε + B]〉

Using the fact that Jε commutes with the operators ∂i and is self-adjoint,
gives ∫

〈uε, Jε[AiJε∂iuε]〉 =
∫
〈Jεuε, A

i∂iJεuε〉
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Using Stokes theorem and the symmetry of Ai gives∫
〈Jεuε, A

i∂iJεuε〉 = −
∫
〈∂iA

iJεuε, Jεuε〉 −
∫
〈AiJε∂iuε, Jεuε〉

It follows that ∫
〈uε, Jε[AiJε∂iuε]〉 = −1

2

∫
〈∂iA

iJεuε, Jεuε〉

Substituting this in equation (3.2) gives:

∂tE =
∫
〈(∂iA

i)Jεuε − 2B, Jεuε〉

Now
‖(∂iA

i)Jεuε − 2B‖L2 ≤ ‖∂iA
i‖L∞‖uε‖L2 + 2‖B‖L2

Hence it follows by the Cauchy-Schwarz inequality that

∂tE ≤ ‖∂iA
i‖L∞E + 2‖B‖L2E1/2

This is the fundamental energy estimate. Note that this computation is closely
related to that used to prove uniqueness for solutions of symmetric hyperbolic
systems above.

The existence proof also requires higher order energy estimates. To obtain
these, first differentiate the equation one or more times with respect to the
spatial coordinates. Higher order energy functionals are defined by

Es =
∑

|α|≤s

∫
T n

(Dαuε)2dx

The square root of the energy functional Es is a norm which defines the
Sobolev space Hs. It is because of the energy estimates that Sobolev spaces
play such an important role in the theory of hyperbolic equations. Differen-
tiating the equation for (3.1 gives

∂t(Dαuε) = −Jε[Ai(t, x, uε)Jε∂iD
αuε]− Jε[Dα(Ai(t, x, uε)Jε∂iu)

−Ai(t, x, uε)Jε∂iD
αuε]− JεD

α(B(t, x, uε)) (3.3)

Differentiating the expression for Es with respect to time causes the quantity
∂t(Dαuε) to appear. This can be substituted for using the equation (3.3).
Stokes theorem can be used to eliminate the highest order derivatives, as in
the basic energy estimate. To get an inequality for Es similar to that derived
above for E it remains to obtain L2 estimates for the quantities

Dα(Ai(t, x, uε)Jε∂iuε)−Ai(t, x, uε)Jε∂iD
αuε

and
DαB(t, x, uε)
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This can be done by means of the Moser inequalities, which will be stated
without proof. (For the proofs see [90].)

The first Moser estimate says that there exists a constant C > 0 such
that for all bounded functions f, g on T 3 belonging to the Sobolev space Hs

the following inequality holds:

‖Dα(fg)‖L2 ≤ C(‖f‖L∞‖Dsg‖L2 + ‖Dsf‖L2‖g‖L∞)

Here s = |α| and for a given norm ‖Dsg‖ is shorthand for the maximum of
‖Dαg‖ over all multiindices α with |α| = s. The second estimate says that
there exists a constant C > 0 such that for all bounded functions f, g on T 3

such that the first derivatives of g are bounded, f is in Hs and g is in Hs−1

the following inequality holds:

‖Dα(fg)− fDαg‖L2 ≤ C(‖Dsf‖L2‖g‖L∞ + ‖Df‖L∞‖Ds−1g‖L2)

The third estimate concerns composition with nonlinear functions. Let F be
a smooth function defined on an open subset of R

k and taking values in R
k.

There exists a constant C > 0 such that for all functions f on T 3 taking
values in a fixed compact subset K of U and belonging to the Sobolev space
Hs and any multiindex α with s = |α| ≥ 1 the following inequality holds:

‖Dα(F (f))‖L2 ≤ C‖Df‖s−1
L∞ ‖Dsf‖L2

The result of using the Moser inequalities in the expression for dEs/dt is
an estimate of the form:

∂tEs ≤ CEs

where the constant C depends on a compact set K in which uε takes values, as
above, and the L∞ norm of the first derivatives of uε. This can be estimated
by a C1 function of the C1 norm of uε. By the Sobolev embedding theorem
(see e.g. [63]), there is a constant C such that ‖uε‖C1 ≤ C‖uε‖Hs for any
s > n/2 + 1. Thus we obtain a differential inequality of the form

∂tEs ≤ f(Es)

for a C1 function f . It follows that the quantity Es(t) satisfies the inequality

Es(t) ≤ z(t)

where z(t) is the solution of the differential equation dz/dt = f(z) with initial
value E(0) at t = 0. (A discussion of comparison arguments of this type can
be found in [51], Chap. 3.) Since the function z remains finite on some time
interval [0, T ], the same must be true for Es for any s > n/2 + 1 and the
solutions uε exist on the common interval [0, T ] for all ε. Morover ‖uε(t)‖Hs

is bounded independently of ε for all t ∈ [0, T ]. Putting this in the equation
shows that ‖∂tuε(t)‖Hs−1 is also bounded.
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The proof of existence of a solution with the given initial datum now
follows by some functional analysis. The main point is that the boundedness
of a sequence of functions in some norm often implies the existence of a
sequence which is convergent in another topology. The reader who does not
possess and does not wish to acquire a knowledge of functional analysis may
wish to skip the rest of this paragraph. The space defined by the L∞ norm
of ‖u(t)‖Hs is a Banach space and is also the dual of a separable Banach
space. The family uε is bounded in this space and hence, by the Banach–
Alaoglu theorem (see [81], pp. 68-70) there is a sequence εk tending to zero
such that uεk

(t) converges uniformly in the weak topology of Hs(Tn) to some
function u which is continuous in t with values in Hs(Tn) with repect to the
weak topology. The same argument can be applied to the family ∂tuε. As a
result, after possibly passing to a subsequence, ∂tuεk

(t) converges uniformly
in the weak topology of Hs−1(Tn). On the other hand, since Tn is compact,
the inclusion of Hs(Tn) in Hs−1(Tn) is compact. (This is Rellich’s Lemma.
See e.g. [47], p. 88) Thus, by the vector-valued Ascoli theorem [29] it can
be assumed, once again passing to a subsequence if necessary, that uεk

(t)
converges uniformly in the norm topology of Hs−1(Tn). If s > n/2 + 2 then
the Sobolev embedding theorem can be used to deduce that it converges
uniformly in the norm of C1(Tn). Once this is known it follows directly that
the expression on the right hand side of the approximate equation converges
uniformly to that on the right hand side of the exact equation. On the other
hand ∂tuk converges to ∂tu in the sense of distributions and so u satifies the
original equation in the sense of distributions. The equation then implies that
the solution is C1 and is a classical solution. It also has the desired initial
datum.

Remarks
1. The existence and uniqueness theorem whose proof has just been sketched
says that given an initial datum u0 in Hs(Tn) with s > n/2 + 2 there is
a solution for this datum which is a bounded measurable function u(t) with
values in Hs(Tn) and is such that ∂tu is a bounded measurable function with
values in Hs−1(Tn). With some further work it can be shown that n/2 + 2
can be replaced by n/2 + 1 and that the bounded measurable functions are
in fact continuous with values in the given space [90].
2. The time of existence of a solution which is continuous with values in
Hs(Tn) depends only on a bound for the norm of the initial data in Hs(Tn).
3. The analogues of the higher energy estimates whose derivation was sketched
here for the solutions of the approximating problems hold for the solution it-
self [90]. This implies that as long as the C1 norm of u(t) remains bounded
the Hs norm also remains bounded. This leads to the following continuation
criterion. If u(t) is a solution on an interval [0, T ) and if ‖u(t)‖C1 is bounded
independently of t by a constant C > 0 then the solution exists on a longer
time interval. For there is some T1 such that a solution corresponding to any
data u0 with ‖u0‖Hs ≤ C exists on [0, T1). Considering setting data at times
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just preceding T , and using uniqueness to show that the solutions obtained
fit together to give a single solution shows the existence of a solution of the
original problem on the interval [0, T + T1).
4. The previous remark implies the existence of C∞ solutions corresponding
to C∞ data. For suppose that a datum u0 of class C∞ is given. Then u0
belongs to Hs(Tn) for each s. Thus there is a corresponding solution on an
interval [0, Ts) which is continuous with values in Hs. Assume that Ts has
been chosen as large as possible. It is not possible that Ts → 0 as s →∞. For
the boundedness of the solution in Hs, s > n/2 + 1 implies its boundedness
in C1 and this in turn implies that the solution can be extended to a longer
time interval. Thus in fact Ts does not depend on s. Using the equation then
shows that the solution is C∞.
5. Analogous statements to all of the above can be obtained for the case
where A0 is not the identity with similar techniques. The essential point is to
modify the expressions for the energy functionals using A0. For instance the
basic energy for the approximating problems is given by E =

∫
〈A0uε, uε〉.

6. Our treatment here differs slightly from that of Taylor [90] by the use of
a reduction to finite-dimensional Banach spaces. Which variant is used is a
matter of taste.

The statement made in the second remark is a part of what is referred to
as Cauchy stability. This says that when the initial data is varied the corre-
sponding solution changes in a way which depends continuously on the data.
This assertion applies to solutions defined on a fixed common time interval
[0, T ]. The above remark shows that a common time interval of this kind can
be found for data which are close to a given datum in Hs(Tn). A related
statement is that if the coefficients of the equation and the data depend
smoothly on a parameter, then for a compact parameter interval the corre-
sponding solutions for different parameter values exist on a common time
interval [0, T ] and their restrictions to this time interval depend smoothly on
the parameter.

3.2 Symmetric Hyperbolic Systems on Manifolds

In the last section it was shown how existence and uniqueness statements
can be obtained for solutions of symmetric hyperbolic systems with data
on a torus. It was also indicated that these imply results for more general
settings by means of the domain of dependence. In this section some more
details concerning these points will be provided. First it is necessary to define
what is meant by a symmetric hyperbolic system on a manifold M . (In the
context of the last section M = T 3 × I.) In general this will be an equation
for sections of a fibre bundle E over M which, for simplicity, we will take
to be a vector bundle. The easiest definition is that a symmetric hyperbolic
system is an equation of the form P (u) = 0, where P is a nonlinear differential
operator on M which in any local coordinate system satisfies the definition
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given previously. For the general invariant definition of a differential operator
on sections of a bundle the reader is referred to [71]. The object defined
in local coordinates by σ(ξ) = Aαξα is called the principal symbol of the
differential operator (cf. Sect. 2.1). Here Aα is supposed to be evaluated on a
given section u. The principal symbol is defined invariantly by the differential
operator. Let L(V ) be the bundle of linear mappings from V to itself. Then
the invariantly defined principal symbol is a section of the pullback of the
bundle L(V ) to the cotangent bundle T ∗M . Given a local trivialization of
V it can be identified locally with a k × k matrix-valued function on the
cotangent bundle. Here k is the dimension of the fibre of V , i.e. the number
of unknowns in the local coordinate representation.

In order to define the condition of symmetry in the definition of symmetric
hyperbolic systems in an abstract context, it is necessary to introduce a
Riemannian metric on the bundle V . This metric is not visible in the local
coordinate representation, since in that context this role is played by the flat
metric whose components in the given coordinates are given by the Kronecker
delta. The symmetry condition is expressed in terms of the principal symbol
and the chosen inner product as:

〈σ(ξ)v, w〉 = 〈v, σ(ξ)w〉

for all sections v, w of V and all covectors ξ. The positivity of A0 is replaced by
the condition that for some covector ξ the quadratic form associated to σ(ξ)
via the metric on V (by lowering the index) is positive definite. A hypersurface
such that all its non-vanishing conormal vectors have this property is called
spacelike.

Suppose now we have a symmetric hyperbolic system on a manifold M ,
a submanifold S of M and initial data such that S is spacelike. The aim is
to show the existence of a solution on an open neighbourhood U of S in M
with the prescribed data and that this is the unique solution on U with this
property. Choose a covering of S by open sets Uα with the property that for
each α the closure of this set is contained in a chart domain over which the
bundle V can be trivialized globally. The problem of solving the equations
on some open region in M with data the restriction of the original initial
data to Uα can be solved by means of the results already discussed. For the
local coordinates can be used to identify Uα with an open subset U ′

α of a
torus Tn and the initial data can be extended smoothly to the whole torus.
The equation itself can also be transferred and extended. Corresponding to
the extended data there exists a solution of the equations on Tn × I for
some interval I. The coordinates can be used to transfer (a restriction of)
the solution to an open subset Wα of M which is an open neighbourhood
of Uα. The domain of dependence can then be used to show that there is
an open neighbourhood where the solutions on the different Wα agree on
the intersections. More specifically, on an intersection of this kind the two
in principle different solutions can be expressed in terms of the same local
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coordinates and trivialization. By construction the coordinate representation
of the data is the same in both cases. Thus the local uniqueness theorem
for symmetric hyperbolic systems implies that both solutions are equal in
a neighbourhood of the initial hypersurface. Thus the solutions on different
local patches fit together to define the desired solution. Moreover the domain
of dependence argument shows that it is unique on its domain of definition.

3.3 Other Notions of Hyperbolicity

There are two rather different aspects of the concept of hyperbolicity. The
one is an intuitive idea of what good properties a system of equations should
have in order to qualify for the name hyperbolic. The archetypal hyperbolic
equation is the wave equation and so the desired properties are generalizations
of properties of solutions of the wave equation. The first property is that the
system should have a well-posed initial value problem. This means that there
should exist solutions corresponding to appropriate initial data, that these
should be uniquely determined by the data, and that they should depend
continuously on the data in a suitable sense. The second property is the
existence of a finite domain of dependence. This means that the value of
solutions at a given point close to the initial hypersurface should depend
only on data on a compact subset of the initial hypersurface.

The first aspect of hyperbolicity which has just been presented is a list of
wishes. The second aspect is concerned with the question, how these wishes
can be fulfilled. The idea is to develop criteria for hyperbolicity. For equations
satisfying one of these criteria, the desired properties can be proved once and
for all. Then all the user who wants to check the hyperbolicity of a given
system has to do is to check the criteria, which are generally more or less
algebraic in nature. An example is symmetric hyperbolicity, which we have
already discussed in detail.

Symmetric hyperbolicity can be applied to very many problems in gen-
eral relativity, but there are also other notions of hyperbolicity which have
been applied and cases where no proof using symmetric hyperbolic systems is
available up to now. We will give an overview of the situation, without going
into details. The concepts which will be discussed are strict hyperbolicity,
strong hyperbolicity and Leray hyperbolicity. This multiplicity of definitions
is a consequence of the fact that there is no one ideal criterion which covers
all cases.

There is unfortunately to our knowledge no fully general treatment of
these matters in the mathematical literature. A general theory of this kind
cannot be given in the context of this article, and we will refrain from stating
any general theorems in this section. We will simply indicate some of the
relations between the different types of hyperbolicity and give some references
where more details can be found.

The discussion will use some ideas from the theory of pseudodifferential
operators. For introductions to this theory see [88], [89], [3]. One important
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tool is an operator Λ which defines an isomorphism from functions in the
Sobolev space Hs to functions in the Sobolev space Hs−1. Powers of this
operator can be used to associate functions with a given degree of differentia-
bility (in the sense of Sobolev spaces) with functions with a different degree of
differentiability. The operator Λ is non-local. On the torus it could be chosen
to be the operator (1−Δ)1/2, defined in an appropriate way.

The concept of strict hyperbolicity is easily defined. Suppose that we have
a system of N equations of order m. Suppose there is a covector τ such that
for any covector ξ not proportional to τ the equation detσ(x, τ + λξ) has
Nm distinct real solutions λ. In this case we say that all characteristics are
real and distinct and that the system is strictly hyperbolic. The weakness of
this criterion is due to the fact that it is so often not satisfied for systems of
physical interest. For example, the system for two functions u and v given by
the wave equation for each of them is not strictly hyperbolic. The wave equa-
tion itself is strictly hyperbolic but simply writing it twice side by side leads
to characteristics which are no longer distinct, so that strict hyperbolicity is
lost.

Given a strictly hyperbolic system of order m with unknown u, let ui =
Λ−i∂i

tu for i = 1, 2, . . . ,m − 1. Then the following system of equations is
obtained:

∂tui = Λui+1; 0 ≤ i ≤ m− 1
∂tum−1 = Λ−m+1(∂m

t u)

where it is understood that ∂m
t u should be expressed in terms of u0, . . . , um−1

by means of the original system. This system is first order in a sense which is
hopefully obvious intuitively and which can be made precise using the theory
of pseudodifferential operators. This is not a system of differential equations,
due to the nonlocality of Λ, but rather a system of pseudodifferential equa-
tions. Suppose we write it as ∂tv + Ai(v)∂iv + B(v) = 0, where v is an
abbreviation for u0, . . . , um−1. The idea is now to find a pseudodifferential
operator A0(v) of order zero depending on the unknown so that A0(v)Ai(v)
is symmetric for all v and i and A0 has suitable positivity properties. If an A0

of this kind can be found, then multiplying the equation by it gives something
which looks like a pseudodifferential analogue of a symmetric hyperbolic sys-
tem. This symmetrization of the reduced equation can in fact be carried out
in the case of strictly hyperbolic systems and the resulting first order pseu-
dodifferential equation be treated by a generalization of the methods used
for symmetric hyperbolic systems [89], [90]. This gives an existence theorem,
but does not directly give information about the domain of dependence. This
information can be obtained afterwards by a different method [88].

The algebra involved in symmetrizing the reduction of a strictly hyper-
bolic system has not been detailed. Instead we will present some general
information about symmetrization of first order systems using pseudodiffer-
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ential operators. Consider then the equation

∂tu + Ai(u)∂iu = 0

If there exists a function A0(u) such that A0 is positive definite and A0Ai

is symmetric for each i then multiplying the equation by A0(u) gives the
equation:

A0(u)∂tu + A0(u)Ai(u)∂iu = 0

which is symmetric hyperbolic. This can be generalized as follows. Each dif-
ferential operator has a symbol which is polynomial in ξ. In the theory of
pseudodifferential operators, operators are associated to symbols which no
longer have a polynomial dependence on ξ. Within this theory the general
statement (which must of course be limited in order to become strictly true)
is that any algebra which can be done with symbols can be mimicked by op-
erators. In terms of symbols the problem of symmetrization which has been
stated above can be formulated as follows. Given symbols ξia

i(x, u), which
are matrix-valued functions, find a positive definite symmetric real matrix-
valued function a0(x, u) such that a0(x, u)ξia

i(x, u) is symmetric. When the
problem has been formulated in this way a generalization becomes obvious.
Why not allow a0 to depend on ξ? In the context of pseudodifferential op-
erators this can be done. In order for this to be useful a0 must be of order
zero, which means that it must be bounded in ξ for each fixed (x, u) and
that its derivatives with respect to ξ and x satisfy similar conditions which
will not be given here. In fact it is enough to achieve the symmetrization of
the symbol for ξ of unit length, since the ξ dependence of the procedure is
essentially homogeneous in ξ anyway. It is also important that it be possible
to choose a0 in such a way that it depends smoothly on ξ, since the theory of
pseudodifferential operators requires sufficiently smooth symbols. To prevent
confusion in the notation, a0 will from now on be denoted by r while we write
a(x, ξ, u) = ai(x, u)ξi.

A criterion which ensures that a first order system of PDE can be sym-
metrized in the generalized sense just discussed is that of strong hyperbolicity
[63]. It is supposed that all characteristics are real, that they are of constant
multiplicity, and that the symbol is everywhere diagonalizable. Furthermore,
it is assumed that this diagonalization can be carried out in a way which
depends smoothly on x, ξ and u. This means that there is a symbol b(x, ξ, u)
which satifies

b−1(x, ξ, u)a(x, ξ, u)b(x, ξ, u) = d(x, ξ, u)

where d is diagonal. Let r(x, ξ, u) = [b(x, ξ, u)bT (x, ξ, u)]−1 where the su-
perscript T denotes the transpose. Then r has the desired properties. For
r = b−1(b−1)T is symmetric and positive definite while ra = (b−1)T db−1 is
also symmetric. The one part of this criterion which is not purely algebraic
is the smoothness condition. It is, however, often not hard to check once it is
known how to verify the other conditions.
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Another related notion of hyperbolicity is Leray hyperbolicity [66]. It al-
lows operators with principal parts of different orders in the same system. We
will discuss this in terms of using powers of the operator Λ to adjust the or-
ders of the equations. This is somewhat different from the approach of Leray
but is closely related to it. Suppose we have a system of PDE with unknown
u. Let us split the vector u into a sequence of vectors u1, . . . , uL. Then the
differential equation which we may write schematically as P (u) = 0 can be
rewritten as Pj(ui) = 0, where i and j run from 1 to L. Let vi = Λs(i)ui mul-
tiply the equations Pj(ui) = 0 with Λt(j). The result is a system of equations
of the form Qj(vi) = 0, where Qj(vi) = Λt(j)Pj(Λ−s(i)vi). The order of Qj in
its dependence on vi is the order of Pj in its dependence on ui plus t(j)−s(i).
Now we would like to choose t(j) and s(i) in such a way that all operators Qi

have the same order (say one) in their dependence on the corresponding vari-
able vi and lower order (say zero) in their dependence on vj for i �= j. Adding
the same amount to all indices simultaneously is irrelevant. The indices are
only determined up to a common additive constant. The system is Leray hy-
perbolic if this can be achieved by suitable choices of the decomposition and
the indices, if the operators Pi corresponding to the given decomposition,
considered with respect to their dependence on ui, are strictly hyperbolic,
and if the characteristics of these strictly hyperbolic operators satisfy a cer-
tain condition. (We say more on this condition later.) It is now plausible
that this decomposition can be combined with the symmetrization of strictly
hyperbolic systems to obtain a system of first order pseudodifferential equa-
tions which admit a pseudodifferential symmetrization. We do however stress
that as far as we know the only place where the existence proof for Leray
hyperbolic systems is written down in the literature is in the original lecture
notes of Leray [66] and that the details of the plausibility argument presented
here have not been worked out. It has the advantage that it gives an intuitive
interpretation of the meaning of the indices s(i) and t(j). All the components
of v in the solution will have the same degree of differentiability. If this is Hk

then the variables ui will have differentiability Hk−s(i).
We now comment on the condition on the characteristics mentioned in

the discussion of Leray hyperbolicity. For a strictly hyperbolic system there
is a notion of spacelike covectors analogous to that for symmetric hyperbolic
systems. The position of these spacelike covectors is closely related to the
position of the characteristics. The required condition is that there should
be vectors which are simultaneously spacelike for the L strictly hyperbolic
systems occurring in the definition.

These general ideas concerning Leray hyperbolic systems will now be il-
lustrated by the example of the Einstein-dust system. This example was first
treated by Choquet-Bruhat [17]. A discussion of this and other examples can
also be found in the books of Lichnerowicz [67], [68]. We will have more to
say about this system in Sects. 4.2 and 5.4. The Einstein-dust equations are

Gαβ = 8πρUαUβ
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∇α(ρUα) = 0
Uα∇αUβ = 0

The problem with these equations from the point of view of symmetric hy-
perbolic systems is that while the equation for the evolution of ρ contains
derivatives of Uα the equation for the evolution of Uα does not contain ρ
This could be got around if the derivatives of Uα in the evolution equation
for ρ were considered as lower order terms. This is only possible if the first
derivatives of Uα are considered on the same footing as ρ. The adjustment
of orders involved in the Leray theory, combined with an extra device, allows
this to be achieved. In order that everything be consistent we expect the order
of differentiability of the metric to be one greater than that of Uα. For the
Christoffel symbols occur in the evolution equations for Uα. Combining these
two things means that the density should be two times less differentiable than
the metric. This creates problems with the Einstein equations. For these are
essentially (and the harmonically reduced equations are precisely) non-linear
wave equations for the metric. The solution of a system of this kind is only
one degree more differentiable than the right hand side. This does not fit,
since the density occurs on the right hand side. The extra device consists
is differentiating the Einstein equations once more in the direction Uα and
then substituting the evolution equation for ρ into the result. This gives the
equation:

Uγ∇γGαβ = −8πρUαUβ∇γU
γ

Note that the right hand side of this contains no derivatives of ρ and so is not
worse than the right hand side of the undifferentiated equation. On the other
hand, the left hand side is, in harmonic coordinates, a third order hyperbolic
equation in gαβ and the solution of an equation of this type has (by the Leray
theory) two more degrees of differentiability than the right hand side.

After this intuitive discussion of the Einstein-dust system, let us show how
it is related to the choice of indices needed to make the Leray hyperbolicity of
the system manifest. The first thing which needs to be done is to decide which
equations should be considered as the evolution equations for which variables.
This has already been done in the above discussion. The relative orders of
differentiability we have discussed suggest that we choose s(g) = 1, s(U) = 2
and s(ρ) = 3. This equalizes the expected differentiability of the different
variables. In the new variables the evolution equations for g, U and ρ are of
order four, three and four respectively. To equalize the orders we can choose
t(g) = 1, t(U) = 2 and t(ρ) = 1. The blocks into which the system must
be split are not just three but fifteen, one for each component. The indices
s(i) and t(j) are here chosen the same for each component of one geometrical
object. (Here we have ignored the difficulty that because of the normalization
condition UαUα = −1 the variables Uα are not all independent.)



164 Helmut Friedrich and Alan Rendall

4 Reductions

In Sect. 2 we saw an example of a hyperbolic reduction for Einstein’s field
equations which is, at least in the vacuum case, sufficient to obtain local
existence results and to demonstrate that the local evolution is dominated
by the light cone structure and the associated concept of the domain of
dependence. Thus, besides the existence problem, it settles the conceptual
question whether the evolution process determined by Einstein’s equations is
consistent with the basic tenets of the theory.

Nevertheless, there are various reasons for considering other types of re-
ductions. Different matter fields may require different treatments, various
physical or geometrical considerations may require reductions satisfying cer-
tain side conditions, the desire to control the gauge for an arbitrarily long
time may motivate the search for new gauge conditions. In particular, in re-
cent years various systems of hyperbolic equations deduced from Einstein’s
equations have been put forward with the aim of providing ‘good’ systems for
numerical calculations (cf. [1], [4], [14], [22], [38], [43], [56]). Since it is difficult
to judge the relative efficiency of such systems by a few abstract arguments,
detailed numerical calculations are needed to test them and it still remains
to be seen which of these systems will serve the intended purpose best.

A general discussion of the problem of finding reductions which are use-
ful in numerical or analytical studies should also include systems combining
hyperbolic with elliptic equations (cf. [25], [77], [24] for analytic treatments
of such situations) or with systems of still other types. For simplicity we will
restrict ourselves to purely hyperbolic reductions. But even then a general
discussion does not yet appear feasible. Ideally, one would like to exhibit a
kind of ‘hyperbolic skeleton’ of the Einstein equations and a complete charac-
terization of the freedom to fix the gauge from which all hyperbolic reductions
should be derivable. Instead, there are at present various different methods
available which have been invented to serve specific needs.

Therefore, we will present some of these methods without striving for
completeness. There are various different boundary value problems of inter-
est for Einstein’s equations and tomorrow a new question may lead to a new
solution of the reduction problem. Our aim is rather to illustrate the enor-
mous richness of possibilities to adapt the equations to various geometrical
and physical situations, and to comment on some of the new features which
may be observed. Apart from the illustrative purpose it should not be forgot-
ten, though, that each of the reductions outlined here implies, if worked out
in detail, the local existence of solutions satisfying certain side conditions.

We begin by recalling in general terms the steps to be considered in a
reduction procedure. It should be noted that these steps are not independent
of each other, and that the same is true of the following considerations.

As a first step we need to choose a representation of the field equations.
Above we used the standard representation in which Einstein’s equations are
written as a system of second order for the metric coefficients gμν and we
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also considered the ADM equations with the first and second fundamental
forms of the time slicing as the basic variables. Later we shall also employ
representations involving equations of third order in the metric field, in which
the metric is expressed in terms of an orthonormal frame field.

Contrary to what has been claimed by too ambitious or suggested by am-
biguous formulations, there is no way to get hyperbolic evolution equations
without fixing a gauge. Hyperbolicity implies uniqueness in the PDE sense
(in contrast to the notion of geometric uniqueness used for the Einstein equa-
tions, cf. Sect. 5.2). It is necessary to make a choice of precisely four gauge
source functions.

Although in the proof of an existence result one has to fix a coordinate
system, it is of interest to note that there are choices of gauge conditions
which render the reduced equations hyperbolic for any fixed choice of co-
ordinates. In Sect. 2 we considered the functions F ν(xμ) as gauge source
functions determining the coordinates. Since these functions can be chosen
arbitrarily and since the principal part of the reduced equations (2.39) will
not be changed if they depend on the metric coefficients, they can be assumed
to be of the form F ν = F ν(xμ, gλρ).

The following choice is particularly interesting. Let an affine connection
Γ̄ν

μ
λ be given on the manifold M = R × S on which we want to construct

our solution. Since the difference Γν
μ

λ− Γ̄ν
μ

λ, where the first term denotes
the connection of the prospective solution gμν , defines a tensor field, the
requirement that the equation Γμ = gνλ Γ̄ν

μ
λ be satisfied, has an invariant

meaning. This suggests a way to impose a gauge condition which removes the
freedom to perform diffeomorphisms while leaving all the freedom to perform
coordinate transformations. In particular, if we assume the connection Γ̄ν

μ
λ

to be the Levi–Civita connection of a metric ḡμν on M , the condition Fμ =
gνλ Γ̄ν

μ
λ in equation (2.39) corresponds to the requirement that the identity

map of M onto itself is a harmonic map under which ḡ is pulled back to g
(cf. also [37], [38]).

Again, we do not have a good overview of all the possibilities to impose
gauge conditions. There exist conditions which work well with quite different
representations of the field equations. Examples are given by the choice of
gauge source functions F ν(xμ) considered above, which work with suitably
chosen gauge conditions for the frame field also in the frame formalism ([36]),
or by the gauge, considered also below, in which the shift βa and the function
q = log(αh−σ), with h = det(hab) and σ = const. > 0, are prescribed as
gauge source functions (cf. [4], [22], [38] for reductions based on σ = 1

2 and
different representations of the Einstein equations). There are other gauge
conditions which only work for specific representations like some of the ones
we shall consider in the context of the frame formalism. For some gauge
conditions, like the ones employing the gauge source functions F ν(xμ), the
universal applicability has been shown (cf. our argument in Sect. 2) or is easy
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to see. For others, like the ones using the gauge source function q above, it
has apparently never been shown.

The gauge problem does not admit a ‘universal solution’ which works in all
possible situations of interest. In fact, choosing the gauge is related to some of
the most complicated questions of constructing general solutions to Einstein’s
equations. Often one would like to find a system of coordinates which covers
the complete domain of existence of a solution arising from given initial data.
If there existed such coordinates xμ, we could, in principle, characterize them
in terms of the associated gauge source functions F ν(xμ) considered in Sect. 2.
However, the domain of validity, in particular the ‘lifetime’, of a coordinate
system depends on the data, the equations, the type of gauge condition,
as well as on the given gauge source functions. In practice, gauge source
functions which ensure that the coordinates exist globally, if there exist any
at all, have to be identified in the course of constructing the solution.

Having implemented the gauge conditions, we have to find a hyperbolic
system of reduced equations from our representation of the Einstein equations.
As we shall see, there are often various possibilities and the final choice will
depend on the desired application. With the reduced equations at hand we
have to arrange initial data which satisfy the constraints and are consistent
with the gauge conditions. While the second point usually poses no prob-
lem, the first point involves solving elliptic equations and requires a seperate
discussion.

The reduced equations define together with the initial data a well-posed
initial value problem and we can show, by using standard techniques of the
theory of partial differential equations (cf. Sect. 3.1), the existence of solutions
to the reduced problem, work out differentiability properties of solutions etc.
or start the numerical evolution.

As the final step one needs to show that the constraints and gauge con-
ditions are preserved by the evolution defined by the reduced equations. One
may wonder whether there exists a universal argument which tells us that this
will be the case for any system of hyperbolic reduced equations deduced from
the Einstein equations. The example of the spinor equations discussed below
shows that this cannot be true without restrictions on the matter fields. How-
ever, even if we ask this question about reduced problems for the Einstein
vacuum field equations, the answer seems not to be known. The standard
method here is to use the reduced equations, as in Sect. 2, together with
some differential identities, to show that the ‘constraint quantities’ satisfy
a certain subsidiary system which allows us to argue that these quantities
vanish.

If the gauge condition used in our reduced equations has been shown to be
universally applicable and if there already exists another hyperbolic reduction
using these gauge conditions and applying to the same geometric and physical
situation (choice of matter model), it can be argued, invoking the uniqueness
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property of initial value problems for hyperbolic equations, that our reduced
equations must preserve the constraints and the gauge conditions.

In the examples which follow we shall not always produce the complete re-
duction argument. Often we shall only exhibit a symmetric hyperbolic system
of reduced equations and remark on some of its properties.

4.1 Hyperbolic Systems from the ADM Equations

In the article [11] (cf. also [86]) the authors derived a system from equations
(2.10), (2.11), (2.22) and (2.23) which seems to be numerically distinctively
better behaved than any other system derived so far from the ADM equations.
However, at present there appears to be no clear understanding as to why
this should be so. The symmetric hyperbolic system to be discussed below
was found in the course of an attempt to understand whether the system
considered in [11] is in any sense related to a hyperbolic system. Since other
hyperbolic systems related to the equations in [11] have been discussed in [2],
[44] there is now a large family of such systems available.

In the following we shall consider the fields

βa, q = log(αh−σ), (4.1)

with h = det(hab), σ = const. > 0, as the gauge source functions. The
density h will be used to rescale the 3-metric and the trace-free part of the
extrinsic curvature to obtain the densities h̃ab = h− 1

3 hab, χ̃ab = h− 1
3 (χab −

1
3 χhab). For simplicity we shall refer to h̃ab as to the conformal metric or, if
no confusion can arise, simply as to the metric. The following equations are
derived from the ADM equations by using the standard rules for conformal
rescalings. The occurrence of some of the terms in the following equations
find their proper explanation in the general calculus for densities but we shall
not discuss this here any further.

The unknowns in our equations will be the fields

h̃ab, η = log h, ηa = D̃a log h, χ = habχab, (4.2)

γ̂a = γ̃a − (
1
6

+ σ) D̃a log h, χ̃ab, h̃abc = h̃ab,c, (4.3)

where γ̃a is defined for the metric h̃ab in analogy to (2.32). Note that the power
of the scaling factor h has been chosen such that we have h̃ = det(h̃ab) = 1,
whence 0 = h̃,c = h̃ h̃ab h̃ab,c = h̃ab h̃abc. We denote by D̃ the covariant
derivative, by γ̃a

b
c the connection coefficients, and by R̃ the Ricci scalar

which are defined for the conformal metric h̃ab by the standard rules. In
all expressions involving quantities carrying a tilde any index operations are
performed with the metric h̃ab.

Our equations are obtained as follows (cf. also [11]). From (2.22) we get
by a direct calculation
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∂t h̃ab − h̃ab,c βc = 2 h̃c(a βc
,b) +

2
3
h̃ab βc

,c + 2α χ̃ab, (4.4)

∂t η − η,c βc = 2βc
,c + 2αχ. (4.5)

Taking derivatives on both sides of the second equation gives

∂t ηa − ηa,c βc = 2α D̃a χ + 2χ (σ ηa + D̃a q) + ηc βc
,a + 2βc

,ca. (4.6)

Equation (2.23) implies together with (2.22) that

∂t χ− χ,c βc = Dc Dc α− α ((1− a)R + aR + χ2 − 3λ +
κ

2
(hab Tab − 3 ρ)),

with an arbitrary real number a. To replace R in the second term on the
right hand side, we use the Hamiltonian constraint (2.10), to replace R in the
third term we use the transformation law of the Ricci scalar under conformal
rescalings and the expression of the Ricci scalar R̃ in terms of the conformal
quantities, which give

R = h− 1
3

{
D̃c (γ̃c −

2
3
D̃c log h)− γ̃c

c
b γ̃b+

+h̃ab γ̃a
c

d γ̃c
d

b −
1
18

D̃a log h D̃a log h

}
.

Thus we get

h
1
3

1
α

(∂t χ− χ,c βc) = −a D̃a γ̂a + (σ + a (
1
2
− σ)) D̃a ηa (4.7)

+D̃a D̃aq + a (γ̃c
c

d γ̃d − h̃ab γ̃a
c

d γ̃c
d

b)

+(
1
18

a +
1
6
σ + σ2) ηa ηa + (

1
6

+ 2σ) ηa D̃aq + D̃aq D̃aq

−h
1
3 {(1− a) χ̃ab χ̃ab +

1
3

(1 + 2 a)χ2 − (1 + 2 a)λ+
κ

2
{hab Tab + (1− 2 a) ρ)}.

Using the equations above, the definition of γ̂a, and the momentum constraint
(2.11) as well as its expression in terms of the conformal quantities,

D̃c χ̃ca −
2
3
D̃a χ +

1
2
χ̃ca D̃c log h +

1
6
χ D̃a log h = κTμν nμ hν

a,

we obtain, with arbitrary real number c, by a direct calculation the equation

1
α
{∂t γ̂a − γ̂a,c βc} = −c D̃c χ̃ca + 2 (

1
2

+
c

3
− σ) D̃a χ (4.8)

+(2 + c)κTμν nμ hν
a + 2 χ̃a

c {γ̂c − (
1
2

+
c

4
− 2σ) ηc + D̃c q}
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−χ ((
1
3

+ 2σ) (σ ηa + D̃a q) +
c

6
ηa)− 2 χ̃cd γ̃c

b
d h̃ab

+
1
α

{
hcd hac,b βb

,d −D(c βd) (hab γc
b

d + hcb γd
b

a)− hcd
,b hac,d βb

−(
1
2

+ σ) ηb βb
,a + hcd (hbc βb

,a + hab βb
,c),d − (1 + 2σ)βb

,ba

}
.

For the rescaled trace free part of the extrinsic curvature we get from (2.23)
the equation

∂t χ̃ab − χ̃ab,c βc − 2 χ̃c(a βc
,b) −

2
3
χ̃ab βc

,c

= −αh− 1
3 (Rab −

1
3
Rhab) + h− 1

3 (Da Db α− 1
3
Dc Dc αhab)

−α (χ χ̃ab − 2 h̃cd χ̃ac χ̃bd).

To express the equation in terms of the conformal quantities we use the
transformation law of the Ricci tensor under conformal rescalings and the
expression of the conformal Ricci tensor in terms of the connection coefficients
to get

Rab −
1
3
Rhab = −1

2
h̃cd h̃ab,cd + D̃(a γ̃b) −

1
3
h̃ab D̃c γ̃c

+γ̃c
d

a h̃ed h̃cf γ̃f
e

b +2 γ̃d
e

c h̃df h̃e(a γ̃b)
c

f +
1
3
h̃ab (γ̃c

c
d γ̃d− h̃ef γ̃e

c
d γ̃c

d
f )

+
1
36

(D̃a log h D̃b log h− 1
3
h̃ab h̃cd D̃c log h D̃d log h).

Thus we obtain

h
1
3

1
α
{∂t χ̃ab − χ̃ab,c βc} =

1
2
h̃cd h̃ab,cd − D̃(aγ̂b) +

1
3
h̃ab D̃c γ̂c (4.9)

+D̃a D̃bq −
1
3
h̃ab D̃c D̃cq + D̃aq D̃bq −

1
3
hab D̃cqD̃cq

+(2σ − 1
3
) (η(a D̃b)q −

1
3
hab ηc D̃cq) + (σ2 − 1

3
σ − 1

36
) (ηa ηb −

1
3
hab ηc ηc)

−γ̃c
d

a h̃ed h̃cf γ̃f
e

b−2 γ̃d
e

c h̃df h̃e(a γ̃b)
c

f −
1
3
h̃ab (γ̃c

c
e γ̃e− h̃cd γ̃c

e
f γ̃e

f
d)

+2 χ̃c(a Sc
,b) +

2
3
χ̃ab Sc

,c − h
1
3 (χ χ̃ab − 2 h̃cd χ̃ac χ̃bd).

In all the equations expressions like D̃aγ̃b etc. are defined by the expressions
which would hold if γ̃b denoted a tensor field. Finally, we get from (4.4) that

∂t h̃abc − h̃abc,d βd = 2α D̃c χ̃ab (4.10)
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+2 χ̃ab α (σ ηc + D̃cq) + 4α γ̃c
d

(a χ̃b)d + h̃abd βd
,c

+2βd
(,a h̃b)dc + 2 h̃d(b βd

,a)c +
2
3

(h̃abc βd
,d + h̃ab βd

,dc).

If c > 0, the system (4.4), (4.5), (4.6), (4.7), (4.8), (4.9), (4.10) is symmetric
hyperbolic. This can be seen as follows. (i) We choose real numbers e, f
satisfying

e > 0, f > 0, f a = −2 (
1
2
+

c

3
−σ), e =

σ

2
f−(

1
2
−σ) (

1
2
+

c

3
−σ), (4.11)

and multiply some of the equations by overall factors c, e, f , α−1, to obtain
them in the form (writing out only their principal parts here)

∂t h̃ab − h̃ab,c βc = . . . , (4.12)

∂t η − η,c βc = . . . , (4.13)

e

α
{∂t ηa − ηa,c βc} = e {2 D̃a χ + . . .}, (4.14)

h
1
3

f

α
{∂t χ− χ,c βc} = f {−a D̃a γ̂a + 2

e

f
D̃a ηa + . . .}, (4.15)

1
α
{∂t γ̂a − γ̂a,c βc} = −c D̃c χ̃ca − f a D̃a χ + . . . , (4.16)

h
1
3

c

α
{∂t χ̃ab−χ̃ab,c βc} = c {1

2
h̃cd h̃ab,cd−D̃(aγ̂b)+

1
3
h̃ab D̃c γ̂c+. . .}, (4.17)

c

4α
{∂t h̃abc − h̃abc,d βd} = c {1

2
D̃c χ̃ab + . . .}. (4.18)

(ii) We contract both sides of (4.14) and (4.16) with h̃ba, both sides of (4.17)
with h̃a(c h̃d)b, both sides of (4.18) with h̃a(d h̃e)b h̃fc, and add on the right
hand side of the equation obtained in this way from (4.16) a term of the
form c

3 h̃ba h̃cd D̃aχ̃cd, which vanishes identically but whose formal occurence
makes the symmetry manifest.

The range in which the coefficients a, c, e, f , σ are consistent with (4.11)
can be seen by considering the following cases:

i) a = 0 ↔ σ =
1
2

+
c

3
.
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In this case we have e = ( 1
4 + c

6 ) f and we can choose c, f > 0 arbitrarily. If
a �= 0 we have f = − 2

a ( 1
2 + c

3 − σ) and e = {σ a−1
a − 1

2} ( 1
2 + c

3 − σ), which
gives the following restrictions

ii) a < 0,
|a|

2 (|a|+ 1)
< σ <

1
2

+
c

3
,

iii) 0 < a ≤ 1,
1
2

+
c

3
< σ,

iv) 1 < a <
3 + 2 c

2 c
,

1
2

+
c

3
< σ <

a

2 (a− 1)
.

We cannot have e > 0, f > 0 with a ≥ 3+2 c
2 c .

It is of interest to study the characteristics of the system. Equations (4.12)
and (4.13) contribute factors n(ξ) = nμ ξμ to the characteristic polynomial.
To find the other characteristics we analyse for which ξμ �= 0 the following
linear system of equations, defined by the principal symbol map, admits non-
trivial solutions. We set ξa = h̃ab ξb.

n(ξ) ηa = 2 ξa χ,

h
1
3 n(ξ)χ = −a ξa γ̂a + 2

e

f
ξa ηa,

n(ξ) γ̂a = −c ξb χ̃ba − f a ξa χ,

h
1
3 n(ξ) χ̃ab =

1
2
h̃abc ξc − ξ(a γ̂b) +

1
3
h̃ab ξc γ̂c,

n(ξ) h̃abc = 2 ξc χ̃ab.

The condition n(ξ) = 0 implies χ̃ab = 0 and χ = 0 but there remains a
fifteen-parameter freedom to choose the remaining unknowns. If

n(ξ) �= 0, (4.19)

we derive from the equations above the further equations (writing g(ξ, ξ) =
gμν ξμ ξν)

h
1
3 g(ξ, ξ) χ̃ab = n(ξ) (ξ(a γ̂b) −

1
3
h̃ab ξc γ̂c),

whence

{g(ξ, ξ) +
c

2
hcd ξc ξd} γ̂a = −(

c

6
h− 1

3 ξc γ̂c +
g(ξ, ξ)
n(ξ)

f aχ) ξa.

The latter equation implies

{g(ξ, ξ) +
2 c

3
hcd ξc ξd} ξa γ̂a +

g(ξ, ξ)
n(ξ)

ξc ξc f aχ = 0, (4.20)
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and, with pa such that pa ξa = 0,

{g(ξ, ξ) +
c

2
hcd ξc ξd} pa γ̂a = 0,

Finally we get

{g(ξ, ξ) + (a− 1) (1− 2σ)hcd ξc ξd}χ− a h− 1
3 n(ξ) ξc γ̂c = 0. (4.21)

Equations (4.20) and (4.21), are of the form Au = 0 with the unknown u the
transpose of (χ, ξi γ̂i) and the matrix A satisfying

det A = {g(ξ, ξ) +
2 c

3
(1− a)hcd ξc ξd} {g(ξ, ξ) + (2σ − 1)hcd ξc ξd}.

If
g(ξ, ξ) = 0, (4.22)

it follows from the first of these equations that γ̂a = 0. If a �= 1, σ �= 1
2

there remains the two-parameter freedom to choose χ̃ab with ξa χ̃ab = 0. If
a = 1 or σ = 1

2 there remains the three-parameter freedom to choose χ, χ̃ab

satisfying ξa χ̃ab = − f a
c ξb χ. If g(ξ, ξ) �= 0 the field χ̃ij is known once γ̂a has

been determined. If
g(ξ, ξ) +

c

2
hcd ξc ξd = 0, (4.23)

there is a two-parameter freedom to choose pi γ̂i as above. This is the only
freedom unless a = 1

4 or σ = 1
2 + c

4 , conditions which exclude each other.
Further characteristics are given by the equations

g(ξ, ξ) +
2 c

3
(1− a)hcd ξc ξd = 0, (4.24)

g(ξ, ξ) + (2σ − 1)hcd ξc ξd = 0. (4.25)

The ‘physical’ characteristics correspond of course to (4.22), the two-parameter
freedom pointed out in the case a �= 1, σ �= 1

2 corresponding to the two po-
larization states of gravitational waves and the additional freedom in the
other cases corresponding essentially to a gauge freedom. The timelike char-
acteristics corresponding to (4.19) occur because of the transition from the
system of second order to a system of first order. These characteristics are
neither ‘physical’ nor ‘harmful’. Characteristics corresponding to (4.23) are
spacelike, while the nature of the characteristics corresponding to (4.24) and
(4.25) depends on the constants a and σ. It can happen that one is spacelike
while the other is timelike or both are spacelike.

We note here that it is possible to obtain by similar procedures reduced
equations, for somewhat more complicated unknowns, which have only char-
acteristics which are timelike or null [44].

Though the number c > 0 can be chosen arbitrarily (suitably adjusting
the others) it is not possible to perform the limit c → 0 while keeping the
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symmetric hyperbolicity of the system, however, the equations in [11] can
be considered as limit of equations which are algebraically equivalent to our
systems. We note also that it is not possible to perform a regular limit σ → 0
which would make lapse and shift the gauge source functions. In the limit
as c → 0 (which we can perform if we do not insist on hyperbolicity) all
characteristics, with the exception of the gauge dependent characteristics
corresponding to (4.25), become non-spacelike.

We finally remark on our gauge conditions. Under certain assumptions
the gauge (4.1) coincides with the gauge with harmonic time coordinate and
prescribed shift. From (2.7) follows the general relation

∂tα− α,a βa = α2 χ− α3 Γ 0.

Equation (4.5), written as an equations for h, entails together with (4.1) the
equation

∂tα− α,a βa = 2σ α2 χ + α (2σ βa
,a + ∂tq − q,aβ

a).

Thus the time coordinate t is harmonic in our gauge, i.e. Γ 0 = 0, if σ = 1
2

and ∂tq − q,aβ
a = −βa

,a. In more general situations the expression for Γ 0

implied by the equations above contains information about the solution and
admits no direct conclusion about time-harmonicity in terms of α and βa.

It follows from complete reductions based on the gauge source function
q (cf. e.g [38], [44]) that on solutions of Einstein’s equations it is possible
to achieve the corresponding gauge close to some initial surface. However, it
has apparently never been shown that for prescribed σ > 0, βa and given
spacelike hypersurface of some arbitrary Lorentz manifold, coordinates can
be constructed which realize these gauge source functions. It would be use-
ful to have a proof of the universal applicability of this type of gauge and
information about its general behaviour.

4.2 The Einstein–Euler System

In the following we shall discuss the Einstein–Euler equations, i.e. Einstein’s
equation coupled to the Euler equation for a simple perfect fluid. Its hyper-
bolicity has been studied by various authors (cf. [17], [68], [76]). Though the
system is also important in the cosmological context, our main concern in
analysing the system here is to control the evolution of compact perfect fluid
bodies, which are considered as models for ‘gaseous stars’. In this situation
arises, besides the need to cast the equations into hyperbolic form, the side
condition to control the evolution of the timelike boundary along which the
Einstein–Euler equations go over into the Einstein vacuum field equations.

The analysis of the evolution of the fields in the neighbourhood of this
boundary poses the basic difficulty in the discussion of compact fluid bodies.
In the case of spherical symmetry, this problem was overcome in [61]. If
in more general situations the coordinates used in the hyperbolic reduction
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are governed e.g. by wave equations, as is the case in the harmonic gauge,
there appears to be no way to control the motion of this boundary in these
coordinates. In [39] a system of equations has been derived from the Einstein–
Euler system which combines hyperbolicity with the Lagrangian description
of the flow, so that the spatial coordinates are constant along the flow lines.
Thus the location of the body is known in these coordinates. In the following
we shall discuss this system and derive the subsidiary system, which was not
given in [39].

The Basic Equations We shall use a frame formalism in which the in-
formation on the metric is expressed in terms of an orthonormal frame
{ek}k=0,...,3 and all fields, with the possible exception of the frame itself,
are given in this frame. To make the formalism easily comparable with the
spin frame formalism which will be used later, we shall use a signature such
that gik ≡ g(ei, ek) = diag(1,−1,−1,−1). Let ∇ denote the the Levi–Civita
connection of gμν . The basic unknowns of our representation of the Einstein
equations are given by

eμ
k, Γi

j
k, Ci

jkl, matter variables,

where eμ
k =< ek, x

μ > are the coefficients of the frame field in some coor-
dinates xμ, Γi

j
k are the connection coefficients, defined by ∇i ek = Γi

j
k ej

and satisfying Γi
j

k gjl +Γi
j

l gjk = 0, and Ci
jkl denotes the conformal Weyl

tensor in the frame ek. The latter is obtained from the decomposition

Rijkl = Cijkl + {gi[k Sl]j − gj[k Sl]i}, (4.26)

of the curvature tensor

Ri
jpq = ep(Γq

i
j)− eq(Γp

i
j)− Γk

i
j (Γp

k
q − Γq

k
p) (4.27)

+Γp
i

k Γq
k

j − Γq
i

k Γp
k

j ,

where we also set Sij = Rij − 1
6 gij R, with Rij and R denoting the Ricci

tensor and the Ricci scalar. We shall need the notation

Ti
k

j ek = −[ei, ej ] + (Γi
l

j − Γj
l

i) el,

Δi
jkl = Ri

jkl − Ci
jkl − gi

[k Sl]j + gj[k Sl]
i,

with Ri
jkl understood as being given by (4.27). Furthermore we set

Fjkl = ∇i F
i

jkl, with F i
jkl = Ci

jkl − gi
[k Sl]j .

In the equations above we take account of the Einstein–Euler equations
in the form

Sik = κ (Tik −
1
3
gjk T ), (4.28)
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with an energy-momentum tensor of a simple perfect fluid

Tik = (ρ + p)Ui Uk − p gik. (4.29)

Here ρ is the total energy density and p the pressure, as measured by an
observer moving with the fluid, and U denotes the (future directed) flow
vector field, which satisfies Ui U

i = 1.
We shall need the decomposition

∇j Tjk = qk + q Uk, (4.30)

and the field
Jjk = ∇[j qk], (4.31)

with
q = U i ∇i ρ + (ρ + p)∇i U

i, (4.32)

qk = (ρ + p)U i ∇i Uk + {Uk U i ∇i −∇k} p. (4.33)

We assume that the fluid is simple, i.e. it consists of only one class of par-
ticles, and denote by n, s, T the number density of particles, the entropy per
particle, and the absolute temperature as measured by an observer moving
with the fluid. We shall assume the first law of equilibrium thermodynamics
which has the familiar form d e = −p d v+T d s in terms of the volume v = 1

n
and the energy e = ρ

n per particle. In terms of the variables above, we have

d ρ =
ρ + p

n
dn + nT d s. (4.34)

We assume an equation of state given in the form

ρ = f(n, s), (4.35)

with some suitable non-negative function f of the number density of particles
and the entropy per particle. Using this in (4.34), we obtain

p = n
∂ ρ

∂ n
− ρ, T =

1
n

∂ ρ

∂ s
, (4.36)

as well as the speed of sound ν, given by

ν2 ≡ (
∂ p

∂ ρ
)s =

n

ρ + p

∂ p

∂ n
, (4.37)

as known functions of n and s. We require that the specific enthalpy and the
speed of sound are positive, i. e.

ρ + p

n
> 0,

∂ p

∂ n
= n

∂2 ρ

∂ n2 > 0. (4.38)
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We assume the law of particle conservation

U i ∇i n + n∇i U
i = 0. (4.39)

It implies together with q = 0 and (4.34) that the flow is adiabatic, i.e. the
entropy per particle is conserved along the flow lines,

U i ∇i s = 0. (4.40)

The case of an isentropic flow, where the entropy is constant in space and
time, is of some interest. In this case the equation of state can be given in
the form

p = h(ρ) (4.41)

with some suitable function h. As a special subcase we shall consider pressure
free matter (‘dust’ ), where h ≡ 0.

We note that (4.35), (4.36), (4.37), (4.39), and (4.40) imply

U i ∇i p = −(ρ + p) ν2 ∇i U
i,

from which we get

qk = −∇k p + (ρ + p) {U i ∇i Uk − ν2 Uk ∇i U
i}. (4.42)

Finally, (4.40) implies the equation

LU sk = 0, (4.43)

for sk = ∇k s, where LU denotes the Lie derivative in the direction of U .
The Einstein–Euler equations are given in our representation by the equa-

tions z = 0, q = 0, (4.35), (4.36), (4.37), (4.39), and (4.40), where we denote
by z the vector-valued quantity

z = (Ti
k

j , Δi
jkl, Fjkl, qk). (4.44)

which we shall refer to (as well as to each of its components) as a ‘zero quan-
tity’. These equations entail furthermore Jjk = 0 and (4.43). After making
a suitable choice of gauge conditions we shall extract hyperbolic evolution
equations from this highly overdetermined system .

Decomposition of Unknowns and Equations From now on we shall
assume that

e0 = U,

so that we have U i = δi
0. For the further discussion of the equations we

decompose the unknowns and the equations. With the vector field U we
associate ‘spatial’ tensor fields, i.e. tensor fields Ti1,...,ip satisfying

Ti1,...,il,...,ip
U il = 0, l = 1, · · · , p.
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The subspaces orthogonal to U inherit the metric hij = gij − Ui Uj , and hi
j

(indices being raised and lowered with gij) is the orthogonal projector onto
these subspaces.

We shall have to consider the projections of various tensor fields with
respect to U and its orthogonal subspaces. For a given tensor any contraction
with U will be denoted by replacing the corresponding index by U and the
projection with respect to hi

j will be indicated by a prime, so that for a
tensor field Tijk we write e.g.

T ′
iUk = Tmpq hi

m Up hk
q,

etc. Denoting by εijkl the totally antisymmetric tensor field with ε0123 = 1
and setting εjkl = ε′

Ujkl, we have the decomposition

εijkl = 2 (U[i εj]kl − εij[k Ul]),

and the relations

εjkl εjpq = −2 ε hk
[p hl

q], εjkl εjkq = −2 ε hl
q.

Denoting by C∗
ijkl = 1

2 Cijpq εkl
pq the dual of the conformal Weyl tensor,

its U -electric and U -magnetic parts are given by by Ejl = C ′
UjUl, Bjl = C∗′

UjUl

respectively. With the notation ljk = hjk −Uj Uk, we get the decompositions

Cijkl = 2 (lj[k El]i − li[k El]j)− 2 (U[k Bl]p εp
ij + U[i Bj]p εp

kl), (4.45)

C∗
ijkl = 2U[i Ej]p εp

kl−4Ep[i εj]
p

[k Ul]−4U[i Bj][k Ul]−Bpq εp
ij εq

kl. (4.46)

We set
ai = Uk ∇k U i, χij = hi

k ∇k Uj , χ = hij χij ,

so that we have

∇j U i = Uj ai + χj
i, ai = hj

i Γ0
j

0, χij = −hi
k hj

l Γk
0

l.

Since U is not required to be hypersurface orthogonal, the field χij will in
general not be symmetric. If the tensor field T is spatial, i.e. T = T ′, we
define its spatial covariant derivative by D T = (∇T )′. i.e.

Di Ti1,...,ip
= ∇j Tj1,...,jp

hi
j hi1

j1 . . . hip

jp .

It follows that
Di hjk = 0, Di εjkl = 0.

Equation (4.40) then implies sk = Dk s.
To decompose the equations, we observe the relations

q =
2
κ

hij F ′
iUj , qk = − 2

κ
(hij F ′

ijk − F ′
UkU ),
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and set
Pi = F ′

UiU

= Dj{Eji − κ (
1
3
ρ +

1
2
p)hji}+

1
2
κ (ρ + p) ai + 2χkl εj

l(i Bk)j ,

Qj = −1
2
εj

kl F ′
Ukl

= Dk Bkj + εj
kl (2χi

k − χk
i)Eil + κ (ρ + p)χkl εj

kl,

Pij = {F ′
(i|U |j) −

1
3
hij hkl F ′

kUl} = LU Eij +Dk Bl(i εj)
kl

−2 ak εkl
(i Bj)l − 3χ(i

l Ej)l − 2χl
(i Ej)l + hij χkl Ekl + 2χEij

+
κ

2
(ρ + p) (χ(ij) −

1
3
χhij),

Qkl =
1
2
ε(k

ij F ′
l)ij = LU Bkl −Di Ej(k εl)

ij

+2 ai ε
ij

(k El)j − χi
(k Bl)i − 2χ(k

i Bl)i + χBkl − χij Bpq εpi
(k εjq

l).

Then we find the splitting

Fjkl = 2Uj P[k Ul] + hj[k Pl] + Qi (Uj εi
kl − εi

j[k Ul]) (4.47)

−2Pj[k Ul] −Qjiε
i

kl −
1
2
κhj[k ql] −

1
3
κ q hj[k Ul].

The Reduced System i) In the case of pressure free matter the equation
qk = 0 tells us that e0 is geodesic and we can assume the frame field to
be parallelly transported in the direction of e0. Furthermore, we can assume
the coordinates xα, α = 1, 2, 3 to be constant on the flow lines of e0 and
the coordinate t = x0 to be a parameter on the integral curves of e0. These
conditions are equivalent to

Γ0
j

k = 0, eμ
0 = Uμ = δμ

0,

which, in turn, imply together with the requirement p = 0 the relation qk = 0
if ρ + p > 0. The unknowns to be determined are given by

u = (eμ
a, Γb

i
j , Eij , Bij , ρ),

where a, b = 1, 2, 3. The reduced system is given by

T0
j

a = 0, Δi
j0a = 0, Pij = 0, Qkl = 0, q = 0. (4.48)
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ii) In the general case we cannot assume the frame to be parallelly trans-
ported because the evolution of U is governed by the Euler equations. We
assume the vector fields ea, a = 1, 2, 3, to be Fermi transported in the direc-
tion of U and the coordinates to be chosen as before such that

Γ0
a

b = 0, eμ
0 = Uμ = δμ

0.

Our unknowns are given by

u = (eμ
a, Γ0

0
a, Γa

k
l, Eij , Bkl, ρ, n, s, sk),

and the reduced system by

T0
j

a = 0, Δc
b0a = 0, (4.49)

ν2 Δc
0ac −

1
ρ + p

J ′
Ua = 0, ν2 (Δ0

a0b +
1

ρ + p
J ′

ab) = 0,

Pij = 0, Qkl = 0, q = 0, (4.50)

LU n = −nχ, LU s = 0, LU sk = 0,

where it is assumed that the functions p, ν2, α, β are determined from the
equation of state (4.35) according to (4.36), (4.37), etc. and ρ + p > 0.

Since the functions ρ, s, n are then determined as functions of the coordi-
nates xμ, we remark that the relation ρ(xμ) = f(n(xμ), s(xμ)) is satisfied as
a consequence of the equations for ρ, s, and n, and the relation (4.36), since
q = 0 implies ∂t ρ = d

d t f(n, s). Furthermore, we note that in our formalism
LU sk = ∂t sk − (Γ0

j
k − Γk

j
0) sj = eμ

k ∂t sμ etc.

When we solve the equations Pij = 0 and Qkl = 0, the symmetry of
the fields Eij , Bkl has to be made explicit. The trace-free condition then
follows as a consequence of the equations and the fact that the initial data
are trace-free. With this understanding it is easy to see that the system (4.48)
is symmetric hyperbolic, the remaining equations only containing derivatives
in the direction of U . To see that the system consisting of (4.49) and (4.50)
is also symmetric hyperbolic, we write out some of the equations explicitly
(taking the opportunity to correct some misprints in [39]). It follows directly
from the definition that

Jkj = (ρ + p)
{
U i (∇k ∇i Uj −∇j ∇i Uk)− ν2 Uj ∇k ∇i U

i (4.51)

+ν2 Uk ∇j ∇i U
i − ν2 ∇l U

l (∇k Uj −∇j Uk) +∇k U i ∇i Uj −∇j U i ∇i Uk

+ε
ρ + p

ν2 (
∂2 p

∂ ρ2 )s ∇l U
l (Uk U i ∇i Uj − Uj U i ∇i Uk)

}
+(αUk ∇i U

i − β U i ∇i Uk) sj − (αUj ∇i U
i − β U i ∇i Uj) sk,
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where we set

α = (ρ + p)
∂ ν2

∂ s
− (1 +

n

ν2

∂ ν2

∂ n
)
∂ p

∂ s
+ ν2 nT, β = nT − 1

ν2

∂ p

∂ s
.

In particular,

− 1
ρ + p

J ′
Ua = e0(Γ0

0
a)− ν2 ea(Γc

c
0) + Γ0

0
c (Γa

c
0 − Γ0

c
a) (4.52)

+
(

ρ + p

ν2 (
∂2 p

∂ ρ2 )s − ν2
)

Γc
c

0 Γ0
0

a −
α

ρ + p
Γc

c
0 sa,

and

− 1
ρ + p

J ′
ab = ea(Γ0

0
b)− eb(Γ0

0
a)− Γ0

0
c (Γa

c
b − Γb

c
a) (4.53)

−ν2 Γc
c

0 (Γa
0

b − Γb
0

a)} − β

ρ + p
(Γ0

0
a sb − Γ0

0
b sa).

From this follows that the last two equations of (4.49) are given by

∂t Γ0
0

a − ν2 ec(Γa
c

0) = −Γ0
0

c Γa
c

0 (4.54)

−
(

ρ + p

ν2 (
∂2 p

∂ ρ2 )s − ν2
)

Γc
c

0 Γ0
0

a +
α

ρ + p
Γc

c
0 sa

+ν2 (
Γk

c
0 (Γa

k
c − Γc

k
a)− Γa

c
k Γc

k
0 + Γc

c
k Γa

k
0 + Rc

0ac

)
,

ν2 ∂t Γa
0

b − ν2 eb(Γ0
0

a) = ν2 (
Γk

0
b (Γ0

k
a − Γa

k
0) (4.55)

−Γ0
0

c Γa
c

b + R0
b0a + Γ0

0
c (Γa

c
b − Γb

c
a)

+ν2 Γc
c

0 (Γa
0

b − Γb
0

a) +
β

ρ + p
(Γ0

0
a sb − Γ0

0
b sa)

)
.

The remaining equations of (4.49) and (4.50) (besides Pij = 0, Qkl = 0)
again only contain derivatives in the direction of U .

The Derivation of the Subsidiary Equations We have to show that any
solution to the reduced equations which satisfies the constraints on an initial
hypersurface, i.e. for which z = 0 on the initial hypersurface, will satisfy z = 0
in the domain of dependence of the initial hypersurface with respect to the
metric supplied by the solution. For this purpose we will derive a system of
partial differential equations for those components of z which do not vanish
already because of the reduced equations and the gauge conditions.

We begin by deriving equations for Fjkl. There exist two different expres-
sions for Fkl ≡ ∇j Fjkl. From the definition of Fjkl and from the symmetries
of the tensor field involved follows
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Fkl = ∇j ∇i Fijkl = ∇j ∇i Cijkl −∇j ∇[k Sl]j

= −Rp
[i

ij Cj]pkl + Cijp[l R
p

k]
ij +

1
2
Ti

p
j ∇p Cij

kl

+∇[k ∇j Sl]j −Rp
[l

j
k] Spj −Rp

j
j

[k Sl]p +∇p Sj
[l Tk]

p
j ,

where we took into account that we do not know at this stage whether the
connection coefficients Γi

j
k supplied by the solution define a torsion free

connection. From the reduced field equations, the definition of the zero quan-
tities, and the symmetries of Cijkl, it follows that

Fkl = −Δp
[i

ij Cj]pkl + Cijp[l Δ
p

k]
ij +

1
2
Ti

p
j ∇p Cij

kl (4.56)

+κJkl + Δp
[l

j
k] Spj −Δp

j
j

[k Sl]p = N(z),

where N(z) is, as in the following, a generic symbol for a smooth function
(which may change from equation to equation) of the zero quantities which
satisfies N(0) = 0.

On the other hand, because of the reduced equations, equation (4.47)
takes the form

Fjkl = 2Uj P[k Ul] + hj[k Pl] + Qi (Uj εi
kl − εi

j[k Ul])−
1
2
κhj[k ql]. (4.57)

Contracting with ∇j , decomposing the resulting expression into F ′
kU , F ′

kl and
equating with the corresponding expressions obtained from (4.56), we arrive
at equations of the form

LU Pk +
1
2
εk

ij Di Qj = N(z) (4.58)

LU Qk −
1
2
εk

ij Di Pj = N(z). (4.59)

The connection defined by the Γi
j

k and the associated torsion and cur-
vature tensors satisfy the first Bianchi identity∑

(jkl)

∇j Tk
i

l =
∑
(jkl)

(Ri
jkl + Tj

m
k Tl

i
m),

where
∑

(jkl) denotes the sum over the cyclic permutation of the indices
jkl. Setting here j = 0, observing that the symmetries of Ci

jkl, Skl imply∑
(jkl) R

i
jkl =

∑
(jkl) Δ

i
jkl, and taking into account the reduced equations,

we get from this an equation of the form

e0(Ta
i

b) = N(z). (4.60)
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To derive equations for Δi
jkl, we use the second Bianchi identity∑

(jkl)

∇j Ri
mkl = −

∑
(jkl)

Ri
mnj Tk

n
l. (4.61)

We write
Ri

jkl = Δi
jkl + Ci

jkl + Ei
jkl + Gi

jkl,

with Ei
jkl = gi

[k S∗
l]j−gj[k S∗

l]
i, Gi

jkl = 1
2 S gi

[k gl]j and S∗
jk = Sjk− 1

4 S gjk.
Using the well known facts that the left and right duals of Cijkl and Gijkl

are equal while the left dual of Eijkl differs from its right dual by a sign, and
using the reduced equations, we get∑

(jkl)

∇j Ri
mkl =

∑
(jkl)

∇j Δi
mkl

+
1
2
εjkl

p (∇q Cq
prs −∇q Eq

prs +∇q Gq
prs) εm

irs

=
∑
(jkl)

∇j Δi
mkl +

1
2
εjkl

p (Fprs + κ gpr qs) εm
irs,

whence, by (4.57) and (4.61),∑
(jkl)

∇j Δi
mkl = N(z). (4.62)

i) In the case of pressure free matter we get from (4.62), by setting j = 0 and
using (4.48), an equation of the form

e0(Δi
kab) = N(z). (4.63)

Since, as remarked earlier, qk = 0 by our gauge conditions, the system of
equations consisting of (4.58), (4.59), (4.60), and (4.63) constitutes the de-
sired ‘subsidiary system’ for the zero quantities in the pressure free case.

ii) Using (4.49), we get in the general case by the analogous procedure
only an equation of the form

e0(Δa
bcd) = N(z). (4.64)

By the antisymmetry of J ′
ab we know already that

Δ0
a0b + Δ0

b0a = 0.

We can express the equations for Δ0
[b|0|c], Δ0

abc. in terms of the quantities

Δa =
1
2
εa

bc Δ0
b0c, Δ∗

ab =
1
2
ε(a

cd Δ0
b)cd, Δ∗

a =
1
2
Δc

0ac, (4.65)
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because

Δ0
[b|0|c] = −Δa εa

bc, Δ0
abc = −Δ∗

ad εbc
d + 2ha[b Δ∗

c].

From (4.62) we get

e0 (Δ0
abc) + ec (Δ0

a0b) + eb (Δ0
ac0) = N(z),

which implies for the quantities (4.65) equations

2 e0 (Δ∗
a)− εa

bc eb (Δc) = N(z),

and
e0 (Δ∗

ab)− e(a (Δb)) + hab hcd ec (Δd) = N(z).

Since we have

hab ea (Δb) = −1
2
εabc ea (

1
ρ + p

J ′
bc) = −1

2
1

ρ + p
εijk ∇i ∇j qk+N(z) = N(z),

we can write the second equation in the form

e0 (Δ∗
ab)− e(a (Δb)) = N(z).

From (4.62) we get furthermore

ea (Δ0
bcd) + ed (Δ0

bac) + ec (Δ0
bda) = N(z),

which implies in terms of the quantities (4.65) an equation of the form

hab ea (Δ∗
bc)− εc

ab ea (Δ∗
b).

By a direct calculation we derive from (4.31) the equation

2LU J ′
ij = 4D[i J

′
Uj] − hi

p hj
q (Δl

npq + Δl
qnp + Δl

pqn)Un ql

−hi
p hj

q (Tl
n

p ∇n qq + Tq
n

l ∇n qp + Tp
n

q ∇n ql)U l

−2 ai J
′
Uj + 2 aj J ′

Ui,

which can be rewritten by (4.49) in the form

(ρ + p) {e0 (Δa) + 2 ν2 εa
bc eb (Δ∗

c)} = N(z). (4.66)

From the equations above we obtain the system

(ρ + p) {2 ν2 e0 (Δ∗
a)− ν2 εa

bc eb (Δc)} = N(z), (4.67)

(ρ + p) {e0 (Δa) + ν2 εa
bc eb (Δ∗

c) + ν2 hbc eb (Δ∗
ca)} = N(z), (4.68)

cab (ρ + p) {ν2 e0 (Δ∗
ab)− ν2 e(a (Δb))} = N(z), (4.69)
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where cab = 1 if a = b and cab = 2 if a �= b. Finally, we obtain from (4.31),
(4.49) the equation

LU qa = 2 ν2 (ρ + p)Δc
0ac. (4.70)

Equations (4.58), (4.59), (4.60), (4.64), (4.67), (4.68), (4.69), and (4.70) con-
stitute the subsidiary equations for the zero quantities in the general case.

We note here that in the reduced system it has not been built in explic-
itly that the energy-momentum tensor has vanishing divergence (cf. equation
(4.30)). While we assumed the equation q = 0 as part of the reduced equa-
tions, we verify the vanishing of the quantity qk by deriving the subsidiary
equations and using the uniqueness property for these equations.

In the present formalism the gauge conditions are taken care of by the
explicit form of some of the unknowns, however the list of constraints is
much longer than in the previous discussions. We shall not try to demon-
strate that the constraints are preserved in the specific case of ‘floating fluid
balls’.. Though the construction of data for fluid balls of compact support
which are embedded in asymptotically vacuum data has been shown and
their smoothness properties near the boundary have been discussed [70], the
evolution in time of these data and the precise smoothness properties of the
fields near and possible jumps travelling along the boundary have not been
worked out yet. However, without a precise understanding of the behaviour
of the solution near the boundary the conservation of the constraints cannot
be demonstrated.

Our reduced system also found applications in cosmological context where
the fluid is spread out, with ρ + p > 0, over the time slices (cf. [31], [79]).
In this case the desired conclusion follows from the fact that the subsidiary
systems are symmetric hyperbolic, have right hand sides of the form N(z),
and the characteristics of the reduced system and the subsidiary system are as
follows (where we use only the frame components ξk = ξμ eμ

k of the covector
ξ).

(i) In the case of pressure free matter the characteristic polynomial of the
reduced system is of the form

c (ξ0)K (ξ2
0 +

1
4
hab ξa ξb)L (gμν ξμ ξν)N ,

with positive integers K, L, N and constant factor c, while the characteristic
polynomial of the subsidiary system only contains the first two factors. Thus
the characteristics of the subsidiary system are timelike with respect to gμν

(cf. also the remarks in Sect. 2).
(ii) In the general case the characteristic polynomial of the reduced equa-

tions is of the form

c (ξ0)K (ξ2
0 +

1
4
hab ξa ξb)L (ξ2

0 + ν2 hcd ξc ξd)M (gμν ξμ ξν)N , (4.71)

with positive integers K, L, M , N and constant factor c, while the character-
istic polynomial of the subsidiary system is generated by powers of the first
three factors.
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We note that the equations (4.54) and (4.55) contribute to the principal
symbol the third factor which corresponds to the sound cone pertaining to the
fluid. If one wants to ensure that the sound does not travel with superluminal
speed one has to require the equation of state (4.35) to be such that ν ≤ 1.
For the question of existence and uniqueness of solutions there is no need
to impose such a condition, but if ν > 1, the domain of dependence with
respect to gμν , as it has been defined in Sect. 2, cannot be shown any longer,
by the arguments given in Sect. 2, to be also a domain of uniqueness. In any
case, it follows from the characteristic polynomials that in a domain where
the solution of the reduced system is unique according to those arguments,
the constraints will be satisfied if they hold on the initial hypersurface.

We note that the system simplifies considerably in the isentropic case. In
the reduced system the function ρ+p then neither occurs in the principal part
nor in a denominator. In the case of the subsidiary system a more detailed
discussion is required to understand the consequences of the occurrence of
the various factors ρ + p.

In our procedure the fluid equations serve two purposes, they determine
the motion of the fluid as well as the evolution of the frame. If we set κ = 0
in all equations the fluid equations decouple from the geometric equations
and we obtain a new hyperbolic reduction of the vacuum field equations. In
this procedure any exotic ‘equation of state’ may be prescribed as long as it
ensures a useful, long-lived gauge.

If the initial data for the Einstein–Euler equations are such that U , ρ, p,
n, s, and the equation of state can be smoothly extended through the bound-
aries of the fluid balls, this suggests using the ‘extended fluid’ to control the
evolution of the gauge in the vacuum part of the solution near the boundary.

4.3 The Initial Boundary Value Problem

In the previous section we studied a problem involving a distinguished time-
like hypersurface. Its evolution in time was determined by a physical pro-
cess. There are also important problems where the Einstein equations are
solved near timelike hypersurfaces which are prescribed for practical reasons,
e.g. to perform numerical calculations on finite grids. The underlying initial
boundary value problem for Einstein’s field equations, where initial data are
prescribed on a (spacelike) hypersurface S and boundary data a (timelike)
boundary T which intersect at a 2-surface Σ = T ∩ S, has been analysed in
detail in the article [42]. The solution to this problem requires a hyperbolic
reduction which needs to satisfy, beyond the conditions discussed at the be-
ginning of this section, certain side conditions. In the following we want to
comment on those aspects of the work in [42] which illustrate the flexibility
of the field equations in performing reductions and on certain characteris-
tics of the reduced system. For the full analysis of the initial boundary value
problem we refer to [42].
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Since we are dealing with a problem for equations which are essentially
hyperbolic, the problem can be localized. In suitably adapted coordinates xμ,
defined on some neighbourhood of a point p ∈ Σ, the manifold M on which
the solution is to be determined will then be given in the form M = {x ∈
R

4|x0 ≥ 0, x3 ≥ 0}, the initial hypersurface by S = {x ∈ M |x0 = 0} and the
boundary by T = {x ∈ M |x3 = 0}. Clearly, we will have to prescribe Cauchy
data on S as before, we will have to analyse which kind of boundary data are
admitted by the equations, and on the edge Σ = {x ∈ M |x0 = 0, x3 = 0}
the data will have to satisfy some consistency conditions, as is always the
case in initial boundary value problems.

Maximally Dissipative Initial Boundary Value Problems We have
seen in Sect. 3.1 that energy estimates provide a basic tool for obtaining
results about the existence and uniqueness of solutions to symmetric hyper-
bolic systems. To explain the side conditions which have to be satisfied in a
hyperbolic reduction of an initial boundary value problem for Einstein’s field
equations, we consider what will happen if we try to obtain energy estimates
in the present situation. Assume that we are given on M in the coordinates
xμ a linear symmetric hyperbolic system of the form

Aμ∂μ u = B u + f(x), (4.72)

for an R
N -valued unknown u. The matrices Aμ = Aμ(x), μ = 0, 1, 2, 3, are

smooth functions on M which take values in the set of symmetric N × N -
matrices, there exists a 1-form ξμ such that Aμ ξμ is positive definite, B =
B(x) is a smooth matrix-valued function and f(x) a smooth R

N -valued func-
tion on M . For convenience we assume that the positivity condition is satisfied
with ξμ = δ0

μ.
If we assume that u vanishes for large positive values of xα, α = 1, 2, 3,

and if the relation

∂μ(tuAμ u) = tuK u + 2 tu f with K = B + tB + ∂μ Aμ,

implied by (4.72), is integrated over a set Mτ = {x ∈ M |0 ≤ x0 ≤ τ}, defined
by some number τ ≥ 0, we obtain the relation∫

Sτ

tuA0 u dS =
∫

S

tuA0 u dS +
∫

Mτ

{tuK u + 2 tu f} dV +
∫

Tτ

tuA3 u dS,

involving boundary integrals over Sτ = {x ∈ M |x0 = τ} and Tτ = {x ∈
M |0 ≤ x0 ≤ τ, x3 = 0}. Obviously, the structure of the normal matrix A3

plays a prominent role here. If the last term on the right hand side is non-
positive, we can use the equation above to obtain energy estimates for proving
the existence and uniqueness of solutions.

By this (and certain considerations which will become clear when we have
set up our reduced system) we are led to consider the following maximally
dissipative boundary value problem.
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We choose g ∈ C∞(S,RN ) and require as initial condition u(x) = g(x)
for x ∈ S. We choose a smooth map Q of T into the set of linear subspaces
of R

N and require as boundary condition u(x) ∈ Q(x) for x ∈ T . The type
of map Q admitted here is restricted by the following assumptions.

(i) The set T is a characteristic of (4.72) of constant multiplicity, i.e.

dim(kerA3(x)) = const. > 0, x ∈ T.

(ii) The map Q is chosen such as to ensure the desired non-positivity

tuA3(x)u ≤ 0, u ∈ Q(x), x ∈ T.

(iii) The subspace Q(x), x ∈ T , is a maximal with (ii), i.e. the dimen-
sion of Q(x) is equal to number of non-positive eigenvalues of A3 counting
multiplicity.

The specification of Q can be expressed in terms of linear equations.
Since A3 is symmetric, we can assume, possibly after a transformation of the
dependent variable, that at a given point x ∈ T

A3 = κ

⎡⎣−Ij 0 0
0 0k 0
0 0 Il

⎤⎦ , κ > 0,

where Ij is a j×j unit matrix, 0k is a k×k zero matrix etc. and j+k+l = N .
Writing u = t(a, b, c) ∈ R

j × R
k × R

l we find that at x the linear subspaces
admitted as values of Q are neccessarily given by equations of the form 0 =
c−H a where H = H(x) is a l × j matrix satisfying

− ta a + ta tH H a ≤ 0, a ∈ R
j , i.e. tH H ≤ Ij .

We note that there is no freedom to prescribe data for the component b of u
associated with the kernel of A3. More specifically, if A3 ≡ 0 on T , energy es-
timates are obtained without imposing conditions on T and the solutions are
determined uniquely by the initial condition on S. By subtracting a suitable
smooth function from u and redefining the function f , we can convert the
homogeneous problem above to an inhomogeneous problem and vice versa.
Inhomogeneous maximal dissipative boundary conditions are of the form

q = c−H a, (4.73)

with q = q(x), x ∈ T , a given R
l-valued function representing the free bound-

ary data on T .
Maximally dissipative boundary value problems as outlined above have

been worked out in detail in [74], [83] for the linear case and in [48] [84] for
quasi-linear problems (see also these articles for further references). If we want
to make use of this theory to analyse the initial boundary value problem for
Einstein’s field equations we will have to solve two problems which go beyond
what is known from the standard Cauchy problem.
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(i) We will have to find a reduction, involving a symmetric hyperbolic
system, which gives us sufficient information on the normal matrix so that
we can control the conditions above.

(ii) To demonstrate the preservation of the constraints we will have to
discuss an initial boundary value problem for the subsidiary system. This
should be such as to admit a uniqueness proof. Moreover, there is the problem
of getting sufficient control on the solution near T . While the initial data for
the reduced system will of course be arranged such that the constraints are
satisfied on the initial hypersurface S, it will a priori not be clear that we will
have sufficient information on the behaviour of the solution to the reduced
equations and on the data on T in order to conclude that the constraints will
be satisfied on T .

The choice of representation of the field equations, of the gauge conditions
and the gauge source functions, and, in particular, the choice of the reduced
equations will largely be dominated by the second problem.

The Representation of the Einstein Equations In [42] the initial bound-
ary value problem for Einstein’s vacuum field equations was analysed in terms
of the equations

Ti
k

j = 0, Δi
jkl = 0, Fjkl = 0, (4.74)

of the previous section with everywhere vanishing energy-momentum tensor.
We shall use these equations together with the conventions and notation
introduced in the previous section.

The Gauge Conditions The gauge, which we assume here for simplicity
extends to all of M , has been chosen as follows. On the initial hypersurface
x0 = 0 and xα, α = 1, 2, 3, are coordinates with x3 = 0 on Σ and x3 > 0
elsewhere. The timelike unit vector field e0 on M is tangent to T , orthogonal
to the 2-surfaces Sc = {x3 = c = const. > 0} in S, and it points towards M
on S ∩U . The coordinates xμ satisfy eμ

0 = e0(xμ) = δμ
0 on M and the sets

Tc = {x3 = c} are smooth timelike hypersurfaces of M with T0 = T . The unit
vector field e3 is normal to the hypersurfaces Tc and points towards M on T .
The vector fields eA, A = 1, 2, are tangent to Tc ∩S and such that they form
with e0, e3 a smooth orthonormal frame field on S. On the hypersurfaces Tc

these fields are Fermi transported in the direction of e0 with respect to the
Levi–Civita connection D defined by the metric induced on Tc. The ek form
a smooth orthonormal frame field on U . We refer this type of gauge as an
‘adapted gauge’. Notice that it leaves a freedom to choose the timelike vector
field e0 on M \ S.

In analysing the initial boundary value problem it will be necessary to
distinguish between interior equations on the submanifolds S, T , Tc, Σ, Sc.
Since our frame is adapted to these submanifolds, this can be done by dis-
tinguishing four groups of indices. They are given, together with the values
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they take, as follows

a, c, d, e, f = 0, 1, 2; i, j, k, l,m, n = 0, 1, 2, 3;

p, q, r, s, t = 1, 2, 3; A,B,C,D = 1, 2.

We assume the summation convention for each group.
By our conditions the frame coefficients eμ

k satisfy

eμ
0 = δμ

0, e3
a = 0, e3

3 > 0 on M, (4.75)

while the frame connection coefficients satisfy

Γ0
A

B = 0. (4.76)

The fields ea satisfy on Tc the equations

De0 e0 = Γ0
A

0 eA, De0 eA = −gAB Γ0
B

0 e0. (4.77)

Thus, given the hypersurfaces Tc, the evolution of the coordinates xα, α =
0, 1, 2, and the frame vector fields ea off S is governed by the coefficients
Γ0

A
0.

Another part of the connection coefficients defines the intrinsic connec-
tion D on Tc, since Da ec = Dea

ec = Γa
b

c eb. The remaining connection
coefficients, given by

χab = g(∇ea
e3, eb) = Γa

j
3 gjb = Γa

3
b = Γ(a

3
b), (4.78)

define the second fundamental form of the hypersurfaces Tc in the frame ea.
In the reduced equations, the symmetry of χab has to be taken into account
explicitly. A special role is played by mean extrinsic curvature

χ ≡ gab χab = gjk Γj
3

k = ∇μ eμ
3, (4.79)

since it can be regarded as the quantity controlling the evolution of the hy-
persurfaces Tc and thus of the coordinate x3.

We now choose two smooth functions FA ∈ C∞(M) as gauge source func-
tions. These will occur explicitly in the reduced equations and will play the
role of connection coefficients for the solution, namely FA = Γ0

A
0. Further-

more we will choose a function f ∈ C∞(M) which will play the role of the
mean extrinsic curvature on the hypersurfaces Tc. Here the interpretation is
somewhat more complicated. On T the function χ = f |T must be regarded
as the free datum which, together with certain data on Σ, indirectly spec-
ifies the boundary T . However, for x3 > 0 the function f plays the role of
a gauge source function which determines the gauge dependent hypersurface
Tc, c > 0. It is a remarkable feature of the Codazzi equations that they admit
this freedom while at the same time implying hyperbolic equations.

This example clearly shows the importance of the freedom to dispose of
the gauge source functions. While we could choose FA = 0 locally (cf. the
remarks in [42] about certain subtleties arising here), we need the full freedom
to make use of the gauge source functions f , since otherwise we could only
handle restricted types of boundaries.
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The Reduced Equations Using the gauge conditions above, we extract
from (4.74) the following reduced system for those components of the un-
knowns eμ

k, Γi
j

k, Eij , Bkl which are not determined already by the gauge
conditions and the chosen gauge source functions. Where it has not already
been done explicitly, it is understood that in the following equations the con-
nection coefficients Γ0

A
0 and χ are replaced by the gauge source functions

FA and f respectively. The torsion free condition gives

0 = −T0
k

p eμ
k = ∂t e

μ
p − (Γ0

q
p − Γp

q
0) eμ

q − Γ0
0

p δμ
0. (4.80)

The Gauss equations with respect to Tc provide the equations

0 = ΔB
00A = e0(ΓA

B
0)− eA(FB) + ΓC

B
0 ΓA

C
0 (4.81)

−ΓA
B

C FC + FB FC gAC + χ0
B χA0 − χA

B χ00 − CB
00A,

0 = ΔB
C0A = e0(ΓA

B
C) + FB ΓA

0
C + ΓA

B
0 FD gCD (4.82)

+ΓD
B

C ΓA
D

0 + χ0
B χAC − χA

B χ0C − CB
C0A.

Codazzi’s equations with respect to Tc imply

0 = gab Δ3
ab1 = D0 χ01 −D1 χ11 −D2 χ12 −D1(f), (4.83)

0 = gab Δ3
ab2 = D0 χ02 −D1 χ12 −D2 χ22 −D2(f), (4.84)

0 = Δ3
101 = D0 χ11 −D1 χ01 − C3

101, (4.85)

0 = Δ3
201 + Δ3

102 = 2D0 χ12 −D1 χ02 −D2 χ01 − C3
201 − C3

102, (4.86)

0 = Δ3
202 = D0 χ22 −D2 χ02 − C3

202, (4.87)

where it is understood that the component χ00, which appears only in un-
differentiated form, is given by χ00 = χ11 + χ22 + f . The remaining Ricci
identities give

0 = ΔA
B03 = e0(Γ3

A
B)+FA Γ3

0
B +Γ3

A
0 FC gBC +ΓC

A
B Γ3

C
0 (4.88)

+Γ3
A

B Γ3
3

0 + χ0
A Γ3

3
B − Γ3

A
3 χ0B − ΓC

A
B χ0

C − CA
B03,

0 = ΔA
003 = e0(Γ3

A
0)− e3(FA) + χ0

A Γ3
3

0 − Γ3
A

B FB + ΓB
A

0 Γ3
B

0
(4.89)
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+Γ3
A

0 Γ3
3

0 − ΓB
A

0 χ0
B − Γ3

3
B gBA χ00 − FA χ00 − CA

003,

0 = Δ3
A03 + Δ3

03A = e0(Γ3
3

A)− eA(Γ3
3

0) (4.90)

+Γ3
3

0 FB gBA + Γ3
3

C ΓA
C

0,

0 = gab Δ3
ab3 = e0(Γ3

3
0) + gAB eA(Γ3

3
B)− e3(f) (4.91)

−gab Γ3
3

kΓb
k

a + gab Γb
3

kΓ3
k

a + gab Γm
3

a(Γ3
m

b − Γb
m

3).

In the previous section we saw how to extract a symmetric hyperbolic
system from the Bianchi identities. However, for reasons given below, we
shall not choose that system here. Instead we choose the ‘boundary adapted
system’

P11 − P22 = 0 Q11 −Q22 = 0
2P12 = 0 2Q12 = 0

P11 + P22 = 0 Q11 + Q22 = 0
P13 = 1

2Q2 Q13 = − 1
2P2

P23 = − 1
2Q1 Q23 = 1

2P1,

(4.92)

written as a system for the unknown vector u which is the transpose of

((E−, 2E12, E+, E13, E23), (B−, 2B12, B+, B13, B23)).

Here E± = E11 ± E22, and B± = B11 ± B22 and it is understood that the
relations gij Eij = 0 and gij Bij = 0 are used everywhere to replace the fields
E33 and B33 by our unknowns. Written out explicitly, this system takes the
form (Iμ + Aμ ) ∂μ u = b, with

Iμ =
[
Iμ 0
0 Iμ

]
, Aμ =

[
0 Aμ

TAμ 0

]
,

where

Iμ = δμ
0

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ , Aμ =

⎡⎢⎢⎢⎢⎣
0 −eμ

3 0 eμ
2 eμ

1
eμ

3 0 0 −eμ
1 eμ

2
0 0 0 eμ

2 −eμ
1

−eμ
2 eμ

1 −eμ
2 0 0

−eμ
1 −eμ

2 eμ
1 0 0

⎤⎥⎥⎥⎥⎦ . (4.93)

The reduced system consisting of (4.80) to (4.92), is symmetric hyperbolic.
However, beyond that the choice of this particular system was motivated by
the following specific features.

(i) The theory of maximally dissipative initial value problems applies to
our reduced equations. In equations (4.80) to (4.91) the derivative ∂x3 , which
by our gauge conditions occurs only with the directional derivative e3, is ap-
plied to the gauge source functions but not to the unknowns, while (4.93)
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shows that we have perfect control on the non-trivial part of the normal ma-
trix arising from (4.92). Our discussion of maximally dissipative initial value
problems, which led to (4.73), and the form of the matrices (4.93) suggest
that we can prescribe besides the datum χ, which characterizes the boundary,
precisely two free functions as boundary data on T . This is confirmed by the
detailed discussion in [42], though in general a number of technical details
have to be taken care of .

(ii) If instead of (4.92) we had chosen the system Pij = 0, Qkl = 0 as
equations for the electric and magnetic part of the conformal Weyl tensor,
the theory of maximally dissipative initial value problems would also have
applied. We would, however, have come to the conclusion that besides the
mean extrinsic curvature four functions could be prescribed freely on T . This
apparent contradiction is resolved when one tries to show the preservation
of the constraints, i.e. that those equations contained in (4.74) are satisfied
which are not already solved because of the gauge conditions and the reduced
equations. In the case of the reduced equations above this can be shown for
the following reason. The subsidiary system splits in this case into a hierachy
of symmetric hyperbolic subsystems with the following property. The first
subsystem has vanishing normal matrix on T . This implies under suitable
assumptions on the domain of the solution to the reduced equations that all
unknows in this subsystem must vanish, because the data on S are of course
arranged such that all constraints are satisfied. Furthermore, it follows for any
subsystem in the hierarchy that its normal matrix vanishes if the unknowns
of all previous subsystems in the hierarchy vanish. From this the desired
conclusion follows in a finite number of steps. If we had considered instead
the system Pij = 0, Qkl = 0, the discussion whether the constraints are
preserved would have become quite complicated and would have led us in
the end to the conclusion that only two functions are really free on T while
the others are subject to restrictions determined by the evolution properties
of the reduced system.

We end our discussion of the initial boundary value problem with an
observation about the characteristics of the reduced system. Equations (4.80)
to (4.91) contribute a factor of the form

ξK
0 (ξ2

0 − ξ2
1 − ξ2

2)L (2 ξ2
0 − ξ2

1 − ξ2
2)M ,

to the characteristic polynomial (using again only the frame components of
the covector ξ). The corresponding characteristics are timelike or null with
respect to gμν . However, the subsystem (4.92) contributes a factor

ξ2
0 (ξ2

0 − ξ2
1 − ξ2

2)2 (ξ2
0 − 2 ξ2

1 − 2 ξ2
2 − ξ2

3)2.

If we denote by σj the 1-forms dual to the vector fields ek, so that < σj , ek >
= δj

k and gμν = σ0
μ σ0

ν −σ1
μ σ1

ν −σ2
μ σ2

ν −σ3
μ σ3

ν , the characteristics associated
with the third factor in the polynomial above can be described as the null
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hypersurfaces with respect to the metric

kμν = σ0
μ σ0

ν −
1
2
σ1

μ σ1
ν −

1
2
σ2

μ σ2
ν − σ3

μ σ3
ν . (4.94)

4.4 The Einstein–Dirac System

Apparently, not much has been shown so far about the existence of solutions
to the Einstein–Dirac system for general data. The initial value problem for
this system was considered in [9], but no existence theorem for the evolution
equations was proved there. J. Isenberg has suggested to us that it should
be possible to show the well-posedness of the equations by formulating the
equations as a system of wave equations in a way similar to what was done
for the Cauchy problem for classical supergravity in [8]. However, this idea
has not been worked out in the literature.

We shall indicate here how to obtain symmetric hyperbolic evolution equa-
tions from the Einstein–Dirac system. To avoid lengthy calculations, we shall
not discuss the complete reduction procedure but only use this system to
illustrate certain questions arising in the reduction.

We shall write the equations in terms of the 2-component spin frame for-
malism, which may be thought of as the spinor version of the frame formalism
used in the previous sections. The fields and the equations will be expressed
in terms of a spin frame {ιa}a=0,1, which is normalized with respect to the
antisymmetric bilinear form ε in the sense that it satisfies εab = ε(ιa, ιb) with
ε01 = 1. The associated double null frame is given by eaa′ = ιa ῑa′ , it satisfies
ēaa′ = eaa′ and g(eaa′ , ebb′) = εab εa′b′

All spinor fields (with the possible exception of the basic spin frame itself
and the vector fields eaa′) will be given with respect to the spin frame above
and we shall use εab and εab, defined by the requirement εab εcb = δa

c (the
Kronecker symbol), to move indices according to the rule ωa = εab ωb, ωa =
ωb εba.

We use the covariant derivative operator ∇ acting on spinors, which is
derived from the Levi–Civita connection of g and satisfies ∇ εab = 0, to
define connection coefficients Γaa′bc = Γaa′(bc) by

∇aa′ ιb = ∇eaa′ ιb = Γaa′ c
b ιc.

For any spinor field ωa we have

(∇cc′ ∇dd′ −∇dd′ ∇cc′)ωa = −Ra
bcc′dd′ ωb − Tcc′ ee′

dd′ ∇ee′ωa,

with vanishing torsion

0 = Tbb′ dd′
cc′ edd′ = ∇bb′ ecc′ −∇cc′ ebb′ − [ebb′ , ecc′ ] (4.95)

= Γbb′ d
c edc′ + Γ̄bb′ d′

c′ ecd′ − Γcc′ d
b edb′ − Γ̄cc′ d′

b′ ebd′ − [ebb′ , ecc′ ],
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and curvature spinor field

Rabcc′dd′ = edd′(Γcc′ab)− ecc′(Γdd′ab) + Γdd′ae Γcc′ e
b (4.96)

+Γed′ab Γcc′ e
d − Γcc′ae Γdd′ e

b − Γec′ab Γdd′ e
c

+Γde′ab Γ̄cc′ e′
d′ − Γce′ab Γ̄dd′ e′

c′ − Tcc′ ee′
dd′ Γee′ab.

The latter has the decomposition

Rabcc′dd′ = −Ψabcd εc′d′ − Φabc′d′ εcd + Λ εc′d′ (εbd εac + εad εbc), (4.97)

into the conformal Weyl spinor field Ψabcd = Ψ(abcd) as well as the Ricci spinor
Φaba′b′ = Φ(ab)(a′b′) = Φ̄aba′b′ and the scalar Λ, which allow us to represent
the Ricci tensor in the form

Raa′bb′ = 2Φaba′b′ + 6Λ εab εa′b′ .

The Bianchi identity reads

∇f
a′ Ψabcf = ∇(a

f ′
Φbc)a′f ′ . (4.98)

The Field Equations The Einstein–Dirac system is specified (cf. [72]) by
a pair of 2-spinor fields φa, χa′ satisying the Dirac equations

∇a
a′φa = μχa′ , ∇a

a′
χa′ = μφa, (4.99)

with a real constant μ, and the Einstein equations with energy-momentum
tensor

Taa′bb′ =
i k

2
{φa ∇bb′ φ̄a′ − φ̄a′ ∇bb′φa′ + φb ∇aa′ φ̄b′ − φ̄b′ ∇aa′φb (4.100)

−χ̄a ∇bb′χa′ + χa′ ∇bb′ χ̄a − χ̄b ∇aa′χb′ + χb′ ∇aa′ χ̄b}.
The Einstein equations then take the form

Λ = − i k κ μ

3
(φaχ̄

a − φ̄a′χa′
), (4.101)

Φaba′b′ =
i k κ

2
{φ(a ∇b)(a′ φ̄b′) − φ̄(a′ ∇b′)(aφb) (4.102)

−χ̄(a ∇b)(a′χb′) + χ(a′ ∇b′)(aχ̄b)}.
The discussion of this system is complicated by the fact that the Dirac

equations are of first order while derivatives of the spinor fields also appear
on the right hand side of (4.102). Consequently, the right hand side of the
Bianchi identity (4.98) is given by an expression involving the derivatives of
the spinor fields from zeroth to second order. Therefore we need to derive
equations for these quantities as well.
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By taking derivatives of the Dirac equations and commuting derivatives,
we obtain

∇a
a′∇bb′φa = −Rh

a
a

a′bb′ φh + μ∇bb′χa′ (4.103)

∇a
a′∇cc′∇bb′φa = −∇cc′Rh

a
a

a′bb′ φh (4.104)

−Rh
a

a
a′bb′ ∇cc′φh + μ∇bb′∇cc′χa′ −Rh

b
a

a′cc′ ∇hb′φa

−R̄h′
b′ a

a′ cc′ ∇bh′φa −Rh
a

a
a′cc′ ∇bb′φh

and similar equations for the derivatives of χa′ . It is important here that the
curvature quantity

Rh
a

a
a′bb′ = −Φh

da′b′ − 3Λ εa′b′εd
h

which occurs in these equations does not contain the conformal Weyl spinor.
We can use (4.101) and (4.102) to express Rh

a
a

a′bb′ and its derivative in
(4.103) and (4.104) in terms of the spinor fields and their derivatives to
obtain a complete system of equations for φa, ∇bb′φa, ∇cc′∇bb′φa and the
corresponding fields derived from χa′ .

These fields are not quite independent of each other. If we define sym-
metric fields φaca′ , φabca′b′ , χaa′c′ , χaba′b′c′ by setting

φac
a′

= ∇(a
a′
φc), φabc

a′b′
= ∇(a

(a′∇b
b′)φc)

χa
a′c′

= ∇a
(a′

χc′), χab
a′b′c′

= ∇(a
(a′∇b)

b′
χc′),

we get from the Dirac equations

∇aa′φb = φaba′ − μ

2
εab χa′ ,

∇cc′∇bb′φa = φabcb′c′ − 1
2
εb′c′ Ψabch φh +

2
3
εc(a Φb)hb′c′ φh

+2Λφ(aεb)c εb′c′ +
2
3
μ εa(b χc)b′c′ − 1

2
μ2 φa εbc εb′c′ ,

and similar relations for the derivatives of χa′ . From these, the equations
above, and (4.98), (4.101) and (4.102) we can derive equations of the form

∇a
a′φabb′ = M1

ba′b′ , ∇a
a′φabcb′c′ = M2

bca′b′c′ , (4.105)

∇a
a′
χba′b′ = N1

abb′ , ∇a
a′
χbca′b′c′ = N2

abcb′c′ , (4.106)

where M1
ba′b′ , N1

abb′ denote functions of φa, χa′ , φaca′ , χaa′c′ , while M2
bca′b′c′ ,

N2
abcb′c′ depend in addition on φabca′b′ , χaba′b′c′ , and Ψabcd. Note that this

introduces (or rather makes explicit) further non-linearities.
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Hyperbolic Equations from the Einstein–Dirac System Our field
equations for the unknowns

eμ
k, Γaa′bc, Ψabcd, φa, φabb′ , φabcb′c′ , χa′ , χba′b′ , χbca′b′c′ ,

are now given by (4.95) and (4.97) (with the left hand side understood as
being given by (4.96)), (4.98), (4.99), (4.105) and (4.106). Here Einstein’s
equations (4.101) and (4.102) are used to express quantities derived from the
Ricci tensor in terms of the spinor fields and their derivatives.

When we try to deduce a hyperbolic reduced system from these equations,
the first two equations, which determine the gauge dependent quantities, will
require the choice of a gauge, while we expect the remaining equations, which
are tensorial, to contain subsystems which are hyperbolic irrespective of any
gauge. This is indeed the case and there are, due to the fact that most of the
equations are overdetermined, various possibilites to extract such systems.

In [36] sytems of spinor equations have been considered which are built
from systems of the type

∇b
a′ ψbβ = Fa′β(xμ, ψcγ),

or their complex conjugates, where β denotes a multi-index of some sort.
If the components corresponding to different values of the indices b, β are
independent of each other the equations

−∇b
0′ ψbβ = −F0′β

∇b
1′ ψbβ = F1′β

form a symmetric hyperbolic system. Equations (4.99) are thus symmetric
hyperbolic as they stand. If symmetries are present which relate the index
b to a group of unprimed spinor indices comprised by β, the equations to
be extracted are slightly different. For instance, we obtain from (4.98) a
symmetric hyperbolic system (regarding all fields besides the Weyl spinor
field as given) of form

∇f
1′ Ψ000f = . . . ,

∇f
1′ Ψab1f −∇f

0′ Ψab0f = . . . ,

−∇f
0′ Ψ111f = . . .

where the symmetry Ψabcd = Ψ(abcd) is assumed explicitly so that there are
five complex unknown functions. Equations (4.105) and (4.106) can be dealt
with similarly.

To compare the characteristics of the system above with previous hyper-
bolic systems extracted from the Bianchi identity, we set

e0 =
1√
2
(e00′ + e11′), e1 =

1√
2
(e01′ + e10′),
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e2 =
−i√

2
(e01′ − e10′), e3 =

1√
2
(e00′ − e11′).

Then the characteristic polynomial is given up to a positive constant factor
by

ξμ eμ
0 kρν ξρ ξν gλσ ξλ ξσ, (4.107)

which contains the degenerate quadratic form

kμν = 2 eμ
0 eν

0 − eμ
1 eν

1 − eμ
2 eν

2.

The cone {kρν ξρ ξν = 0} is the product of a 2-dimensional cone in the plane
{ξμ eμ

3 = 0} with the real line so that its set of generators is diffeomor-
phic to S1 × R. The associated characteristics are timelike. The special role
played here by the vector field e3 allows us to adapt the system to situations
containing a distinguished direction.

Another method to extract symmetric hyperbolic equations from spinor
equations has been discussed in [37]. It is based on the space-spinor formalism
in which an arbitrary normalized timelike vector field is used to express all
spinor fields and spinor equations in terms of fields and equations containing
only unprimed indices. If the fields and equations are then decomposed into
their irreducible parts (a direct, though somewhat lengthy algebraic proce-
dure), the equations almost automatically decompose into symmetric hyper-
bolic propagation equations and constraints.

For simplicity we choose the timelike vector field to be
√

2 e0 = τaa′
eaa′ with τaa′ = ε0

a ε0′ a′
+ ε1

a ε1′ a′
.

Since τaa′ τ ba′
= εa

b etc., maps generalizing the map ωa′ → τa
a′

ωa′ to
spinors of arbitrary valence are bijective and allow us to obtain faithful rep-
resentations of all spinor relations in terms of unprimed spinors. Writing
∇ab = τb

a′ ∇aa′ = 1
2 εab P + Dab, we obtain a representation of the co-

variant derivative operator in terms of the directional derivative operators
P = τaa′ ∇aa′ , Dab = τ(b

a′ ∇a)a′ acting in the direction of e0 and in di-
rections orthogonal to e0 respectively. In particular, (4.98) splits under the
operations indicated above into ‘constraints’

Dfg Ψabfg = . . . ,

and ‘evolution equations’

P Ψabcd − 2D(a
f Ψbcd)f = . . .

If the latter are multiplied by the binomial coefficients
( 4
a+b+c+d

)
, they are

seen to be symmetric hyperbolic. The characteristic poynomial of this system
is again of the form

ξμ eμ
0 kρν ξρ ξν gλσ ξλ ξσ,
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however, since there is no privileged spacelike direction singled out here, we
have a non-degenerate quadratic form

kμν = (1 + c) eμ
0 eν

0 − eμ
1 eν

1 − eμ
2 eν

2 − eμ
3 eν

3, (4.108)

with some constant c > 0, as in the case of the system used in the case of the
Einstein–Euler equations.

By the method outlined above symmetric hyperbolic systems are also
obtained for equations (4.105) and (4.106). For instance, from the first of
equations (4.105) we obtain for φabc = τc

b′
φabb′ = φ(ab)c an equation of the

form ∇a
d φabc = . . ., where we only indicate the principal part. Using the

decomposition

φabc = φ∗
abc −

2
3
εc(a φ∗

b) with φ∗
abc = φ(abc), φ∗

b = φfb
f ,

and the decomposition of ∇ab, we get a system of the form

P φ∗
a −

2
3
Db

a φ∗
b + 2Dbc φ∗

abc = 2∇bc φbac = . . . ,(
3

a + b + c

) {
P φ∗

abc − 2Dd
(a φ∗

bc)d −
2
3
D(ab φ∗

c)

}
= −2

(
3

a + b + c

)
∇f

(a φ|f |bc) = . . .

which is symmetric hyperbolic.
It is well known that equations for spinor fields of spin m

2 , m > 2 give rise
to consistency conditions (cf. [72]). For instance, the equation

∇a
a′ φabcb′c′ = Hbca′b′c′ , (4.109)

where we consider the right hand side as given, implies the relation

φabcb′c′ Ψabc
d + 4φabcd′(b′ Φabd′

c′) = ∇aa′
Hada′b′c′ ,

which reduces e.g. in the case of vanishing right hand side to a particular
relation between the background curvature and the unknown spinor field.
Depending on the type of equation and the background space-time, such
consistency conditions may forbid the existence of any solution at all. Nev-
ertheless, equation (4.109) implies a symmetric hyperbolic system for which
the existence of solutions is no problem. Difficulties will arise if one wants to
show that the constraints implied by (4.109) are preserved.

This example emphasizes the need to show the preservation of the con-
straints. Because in our case the right hand sides of the equations are given by
very specific functions of the unknowns themselves, we can expect to obtain
useful subsidiary equations.
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There are again various methods to obtain hyperbolic equations for the
gauge-dependent frame and connection coefficients, which depend in partic-
ular on the choice of gauge conditions. In [36], [37] the coordinates and the
frame field have been subject to wave equations (nonlinear in the case of
the frame field). Here we shall indicate a gauge considered in [38] (which
can, of course, also be implemented in the frame formalism considered in the
previous sections).

We shall denote by T a ‘time flow vector field’ and by xμ coordinates
on some neighbourhood of an initial hypersurface S. We assume T to be
transverse to S, the ‘time coordinate’ t ≡ x0 to vanish on S, and the relation
< dxμ, T >= δμ

0 to hold on the neighbourhood such that we can write
T = ∂t.

The frame eaa′ is chosen such that the timelike vector field τaa′
eaa′ is

orthogonal to S. Using the expansion

eaa′ =
1
2
τaa′ τ cc′

ecc′ − τ b
a′ eab with eab = τ(b

a′
ea)a′ ,

we can write

T = α τ cc′
ecc′ + βcc′

ecc′ = α τ cc′
ecc′ + βab eab,

with
τ cc′

βcc′ = 0, βab = τ(a
a′

βb)a′ . (4.110)

Thus the evolution of the coordinates off S is determined by the fields α �= 0
and βaa′

and we can write

τ cc′
ecc′ =

1
α

(∂t − βab eab). (4.111)

Since we have ∇T ιc = Γ b
c ιb, the evolution of the frame is determined

by the functions
Γbc = T aa′

Γaa′bc.

and we can write
τaa′

Γaa′bc =
1
α

(Γbc − βae Γaebc), (4.112)

with Γaebc = τ(e
a′

Γa)a′bc.
We now consider the fields α = α(xμ) > 0, βab = βab(xμ) (together four

real functions) as ‘coordinate gauge source functions’ and the field Γbc =
Γbc(xμ) (six real functions) as ‘frame gauge source functions’. This is feasible,
because given these functions, we can find smooth coordinates and a frame
fields close to an initial hypersurface such that the given functions assume
the meaning given to them above.

The gauge conditions are then expressed by the requirement that the
right hand sides of (4.111) and (4.112) are given in terms of the gauge source
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functions and eab and Γaebc. Thus it remains to obtain evolution equations
for eμ

ab and Γaebc.
Reading the quantity eμ

aa′ for fixed index μ as the expression of the
differential of xμ in the frame eaa′ , we can write (4.95) in the form

∇aa′eμ
bb′ −∇bb′eμ

aa′ = 0.

Contracting this equation with T aa′
and τc

b′
and symmetrizing, we obtain

the equation

0 = ∇T eμ
cb − eμ

b′(b∇T τc)
b′ − eμ

aa′∇bcT
aa′

,

which can be rewritten in the form

∂t e
μ

ab = . . . ,

where the right hand side can be expressed in terms of the gauge source
functions and their derivatives and the unknowns. By using (4.97) with (4.96)
on the left hand side, we can derive in a similar way an equation

∂t Γaebc = . . . ,

with the right hand side again being given in terms of the gauge source
functions and their derivatives and the unknowns.

Thus we obtain symmetric hyperbolic reduced equations for all unknowns
except those given by the left hand sides of the gauge conditions (4.111) and
(4.112). Our procedure applies of course to various other sytems. Our choice
of gauge is of interest because of the direct relation between the gauge source
functions and the evolution of the gauge. The causal nature of the evolution
can be controlled explicitly because the formalism allows us to calculate the
value of the norm g(T, T ) = 2α2 + βab βab. This may prove useful if it is
desired to control the effect of the choice of gauge source functions on the
long time evolution of the gauge in numerical calculations of space-times.

4.5 Remarks on the Structure of the Characteristic Set

We have seen that for certain reduced systems there occur besides the ‘physi-
cal’ characteristics, given by null hypersurfaces, also characteristics which are
timelike or spacelike with respect to the metric gμν . Timelike characteristics,
which usually occur if a system of first order is deduced from a system of sec-
ond order, are usually harmless and of no physical significance. The spacelike
characteristics, which are partly due to the choice of gauge condition and
partly due to the use made of the constraints, have no physical significance
either. Though they are associated with non-causal propagation, there is a
priori nothing bad about them and it rather depends on the applications one
wants to make whether they are harmful or not.
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In the characteristic polynomial (4.71) of the reduced equations for the
Einstein–Euler system there appears a factor ξ2

0 + 1
4 hab ξa ξb which corre-

sponds to timelike characteristics. In vacuum the corresponding cone has of
course no physical meaning, since in general there is no preferred timelike
vector field available. In the perfect fluid case there is a distinguished time-
like vector field present. This, and perhaps the symmetry of the inner cone
with respect to the fluid vector, has led some people to speculate on the phys-
ical significance of that cone [31]. However, in some of the later examples of
hyperbolic equations deduced from the Bianchi identity, which could also be
used in the fluid case, the structure of the characteristics is drastically differ-
ent from the one observed in the fluid case (cf. (4.94) and also the degenerate
cone arising in (4.107)). In particular, the factor above does not occur in their
characteristic polynomials. The large arbitrariness in extracting hyperbolic
equations, which arises from different use made of the constraints implied by
the Bianchi identity, suggests that in the case of the Einstein–Euler system
the only ‘physical characteristics’ are those associated with the fluid vector,
the null cone of gμν , and the sound cone.

The null cone of the metric (4.94) touches the null cone of the metric g
in the directions of ± e3 but it is spacelike in all other directions. Thus all
null hypersurfaces of it are spacelike or null for gμν . Such a cone has the
effect that the ‘domain of uniqueness’ defined by the techniques discussed in
Sect. 3.1 may decrease. However, as we have seen, is does not prevent us from
proving useful results.

There is also no reason to assume that the additional characteristics nec-
essarily create problems in numerical calculations. In situations where the
maximal slicing condition can be used, the occurrence of spacelike character-
istics which are related, as in our examples, in a rigid way with the metric
should be innocuous. Also, numerical calculations based on equations with
inner characteristic cones as observed above have been performed without
difficulties ([35], [55]).

5 Local Evolution

5.1 Local Existence Theorems for the Einstein Equations

The purpose of this section is to present a local existence theorem for the
Einstein vacuum equations. By (abstract) vacuum initial data we mean a
three-dimensional manifold S together with a Riemannian metric hab and a
symmetric tensor χab on S which satisfy the vacuum constraints (see Sect. 2).
A corresponding solution of the vacuum Einstein equations is a Lorentzian
metric gαβ on a four-dimensional manifold M and an embedding φ of S into
M such that hab and χab coincide with the pull-backs via φ of the induced
metric on φ(S) and the second fundamental form of that manifold respectively
and the Einstein tensor of gαβ vanishes. If φ(S) is a Cauchy surface for the
space-time (M, gαβ) then this space-time is said to be a Cauchy development
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of the data (S, hab, χab). The basic local existence theorem for the vacuum
Einstein equations says that every vacuum initial data set has at least one
Cauchy development. In fact to make this precise it is necessary to fix the
differentiability properties which are assumed for the data and demanded of
the solution. For instance, the result holds if the differentiability class for
both data and solutions is taken to be C∞. Note that there is no need to
require any further conditions on the spatial dependence of the data.

The proof of local existence will now be outlined. We follow essentially the
original method of [16] except for the fact that we reduce second order equa-
tions to first order symmetric hyperbolic systems and that we use harmonic
mappings rather than harmonic coordinates. The use of harmonic mappings,
as discussed in Sect. 4, allows us to work globally in space even if the man-
ifold S cannot be covered by a single chart. Using harmonic coordinates it
would be necessary to construct solutions local in space and time and then
piece them together. Choose a fixed Lorentz metric on S × R, for instance
the metric product of the metric hab with −dt2. This comparison metric will
be denoted by ḡαβ . The idea is to look for a solution gαβ on an open sub-
set U of R × S such that the identity is a harmonic map from (U, gαβ) to
(U, ḡαβ). This is a condition which is defined in a global invariant way. Its
expression in local coordinates is gβγ(Γα

βγ − Γ̄α
βγ) = 0 where Γα

βγ and Γ̄α
βγ

are the Christoffel symbols of gαβ and ḡαβ respectively. In the terminology
of Sect. 2.4 this means that we choose gβγ Γ̄α

βγ as a gauge source function.
Next consider the question of reduction of nonlinear wave equations to

symmetric hyperbolic form. This is done as follows. Let gαβ(t, x, u) be func-
tions of (t, x, u) which for each fixed value of (t, x, u) make up a symmetric
matrix of Lorentz signature and consider an equation of the form:

gαβ∂α∂βu + F (t, x, u,Du) = 0 (5.1)

This has been formulated in a local way but a corresponding class of equations
can be defined in the case that the unknown u is a section of a fibre bundle.
As in the above treatment of symmetric hyperbolic equations on a manifold,
consideration will be restricted to the case of sections of a vector bundle V .
Choose a fixed connection on V . Then the class of equations to be considered
is obtained by replacing the partial derivatives in the above equation by
covariant derivatives defined by the given connection. Let uα = ∇αu. Then
the equation (5.1) can be written as:

−g00∇0u0 − 2g0a∇au0 = gab∇aub + F (t, x, u0, ua)
gab∇0ua = gab∇au0 + Kb

∇0u = u0

Here Kb is a term involving the curvature of the connection which is of order
zero in the unknowns of the system. This is a symmetric hyperbolic system
for the unknowns u and uα. Since u is allowed to be a section of a vector
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bundle we are dealing with a system of equations. However the functions gαβ

must be scalars. The appropriate initial data for the second order equation
consists of the values of u and ∂tu on the initial hypersurface. From these
the values of the functions uα on the initial hypersurface may be determined.
Thus an initial data set for the symmetric hyperbolic system is obtained. It
satisfies the additional constraint equation ∇αu = uα. Applying the existence
theory for symmetric hyperbolic systems gives a solution (u, uα). To show
that the function u obtained in this way is a solution of the original second
order equation it is necessary to show that the constraint equation is satisfied
everwhere. That ∇0u = u0 follows directly from the first order system. It also
follows from the first order system that ∇0(ua−∇au) = 0. Since this is a first
order homogeneous ODE for ua −∇au, the vanishing of the latter quantity
for t = 0 implies its vanishing everywhere.

In the case of the vacuum Einstein equations the bundle V can be taken
to be the bundle of symmetric covariant second rank tensors. The connection
can be chosen to be the Levi–Civita connection defined by ḡαβ . This is only
one possible choice but note that it is important that this connection does
not depend on the unknown in the equations, in this case the metric gαβ .

Now a proof of local in time existence for the vacuum Einstein equations
will be presented. Let hab and χab be the initial data. In Sect. 2 it was shown
that the vacuum Einstein equations reduce to a system of nonlinear wave
equations when harmonic coordinates, or the generalization involving gauge
source functions, are used. As was already indicated in that section, there is
no loss of generality in imposing this condition locally in time. If there exists
a development of particular initial data then there exists a diffeomorphism φ
of a neighbourhood of the initial hypersurface such that the pull-back of the
metric with the given diffeomorphism satisfies the harmonic condition with
respect to ḡαβ . In fact φ can be chosen to satisfy some additional conditions.
The harmonic condition is equivalent to a nonlinear wave equation for φ.
Solving the local in time Cauchy problem for this wave equation provides
the desired diffeomorphism. The existence theory for this Cauchy problem
follows from that for symmetric hyperbolic systems by the reduction to first
order already presented. The initial data for φ will be specified as follows. It
is the identity on the initial hypersurface as is the contraction of its derivative
with the normal vector with respect to ḡαβ . Since the vector ∂/∂t is the unit
normal vector to S with respect to ḡαβ it will also have this property with
respect to gαβ .

A local solution of the Einstein equations corresponding to prescribed ini-
tial data can be obtained as follows. Let hab and χab denote the components
of the tensors making up the initial data in a local chart as above. A set of
initial data for the harmonically reduced vacuum Einstein equations consists
of values for the whole metric gαβ and its time derivative on the initial hy-
persurface. A data set of this kind can be constructed from hab and χab as
follows. (The following equations are expressed in local coordinates, but their
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invariant meaning should be clear.)

gab = hab, g0a = 0, g00 = −1
∂tgab = 2χab, ∂tg0a = hbc(hab,c − (1/2)hbc,a)− habΓ̄

b
cdh

cd,

∂tg00 = −2habχab

These data are chosen in such a way that the harmonic condition is satisfied
on the initial hypersurface.

Corresponding to the initial data for the reduced equations there is a
unique local solution of these equations. It remains to show that it is actually a
solution of the Einstein equations provided the initial data hab and χab satisfy
the Einstein constraint equations. In order to do this it suffices to show that
the harmonic conditions are satisfied everywhere since under those conditions
the reduced equations are equivalent to the Einstein equations. Let Δα =
gβγ(Γα

βγ − Γ̄α
βγ). That the harmonic conditions are satisfied can be verified

using the fact that the quantities Δα satisfy a linear homogeneous system of
wave equations. By uniqueness for this system the Δα vanish provided the
initial data Δα and ∂tΔ

α vanish on the initial hypersurface. The first of these
was built into the construction of the data for the reduced equations. The
second is a consequence of the combination of the reduced equations with the
Einstein constraints.

5.2 Uniqueness

The argument of the last section gives an existence proof for solutions of the
vacuum Einstein equations, local in time. It does not immediately say any-
thing about uniqueness of the space-time constructed. The solution of the
reduced equations is unique, as a consequence of the uniqueness theorem for
solutions of symmetric hyperbolic systems. However the freedom to do diffeo-
morphisms has not yet been explored. In fact it is straightforward to obtain a
statement of uniqueness of the solution corresponding to given abstract initial
data, up to diffeomorphism. Suppose two solutions g1 and g2 with the same
initial data are given. Choose a reference metric ḡ as before and determine
diffeomorphisms φ1 and φ2 such that the identity is a harmonic map with
respect to the pairs (ḡ, g1) and (ḡ, g2) respectively. The transformed metrics
satisfy the same system of reduced equations with the same initial data and
thus must coincide on a neighbourhood of the initial hypersurface. Thus g1
and (φ2 ◦ φ−1

1 )∗g2 coincide on a neighbourhood of the initial hypersurface.
This statement is often referred to as ‘geometric uniqueness’.

For hyperbolic equations it is in general hard to prove theorems about
global existence of solutions due to the possibility of the formation of singu-
larities. On the other hand, it is possible to prove global uniqueness theorems.
Proving global uniqueness for the Einstein equations is more difficult due to
difficulties with controlling the freedom to do diffeomorphisms. In this con-
text we use the word ’global’ to mean not just applying to a subset of a
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given solution, but to whole solutions having suitable intrinsic properties.
The strategy which has just been used to prove local existence using har-
monic maps cannot be applied directly. For doing so would require a global
existence theorem for harmonic maps and that we do not have in general.

A global uniqeness theorem was proved by abstract means by Choquet-
Bruhat and Geroch [19], who introduced the notion of the maximal Cauchy
development. If initial data for the Einstein equations coupled to some matter
fields on a manifold S are prescribed, a development of the data is a solution
of the Einstein-matter system on a manifold M together with an embedding
φ of S into a M which induces the correct initial data and for which the
image of S is a Cauchy surface. Another development with a solution of the
Einstein-matter equations on a manifold M ′ and an embedding φ′ is called
an extension of the first if there is a diffeomorphism ψ from M to an open
subset U of M ′ which maps the given metric on M onto the restriction of
the metric on M ′ to U and also maps the matter fields on M to those on U
obtained by restriction from M ′. If we are dealing with the vacuum Einstein
equations then the requirement on the matter fields is absent. In [19] the
following theorem was proved for the vacuum case:
Theorem Let S be an initial data set. Then there exists a development M of
S which is an extension of every other development of S. This development
is unique up to isometry.

The development whose existence and uniqueness is asserted by this theorem
is called the maximal Cauchy development of the initial data set. Uniqueness
up to isometry means the following. If we have two developments of the same
data given by embeddings φ and φ′ of S into manifolds M and M ′ respectively
then there exists a diffeomorphism ψ : M → M ′ which is an isometry and
satisfies φ′ = φ ◦ ψ. The proof of this theorem does not depend strongly on
the vacuum assumption. One potential problem in extending it to certain
matter fields is gauge freedom in those fields. This requires the concept of
extension to be defined in a slightly different way. For instance in the case
of gauge fields it is necessary to consider not only diffeomorphisms of the
base manifold, but also automorphisms of the principal bundle entering into
the definition of the theory. We do not expect that this leads to any essential
difficulty, but in any concrete example one should pay attention to this point.

The proof of this theorem applies directly to Zorn’s lemma and it is an
open question whether it is possible to remove the use of the axiom of choice
from the argument. The maximal Cauchy development is often very useful in
formulating certain arguments. However it remains very abstract and gives
the subjective impression of being difficult to pin down.

It should be emphasized that, despite its global aspects, it would be mis-
leading to consider the above theorem as a global existence theorem for the
Einstein equations in any sense. A comparison with ordinary differential equa-
tions may help to make this clear. If an ordinary differential equation for
a function u(t) is given (with smooth coefficients) then the standard local
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existence theorem for ordinary differential equations says that given an ini-
tial value u0 there exists a T > 0 and a unique solution u(t) on the inter-
val (−T, T ) with u(0) = u0. Now one can ask for the longest time interval
(−T1, T2) on which a solution of this kind exists for a fixed initial value u0.
This is called the maximal interval of existence and has a similar status to
that of the maximal Cauchy development. The fact that the maximal inter-
val of existence is well-defined says nothing about the question whether the
solution exists globally or not, which is the question whether T1 and T2 are
infinite or not. The existence of the maximal Cauchy development says noth-
ing about the global properties of the solution obtained in this way, whereas
global existence of the solution of an ordinary differential equation does mean
that the solution has a certain global property, namely that it exists for an
infinitely long time.

5.3 Cauchy Stability

Cauchy stability of the initial value problem for the Einstein equations is the
statement that, in an appropriate sense, the solution of the Einstein equations
depends continuously on the initial data. This continuity statement has two
parts, which can be stated intuitively in the following way. Firstly, if a solution
corresponding to one initial data set is defined on a suitable closed region,
then the solution corresponding to any initial data set close enough to the
original one will be defined on the same region. Closeness is defined in terms of
Sobolev norms. Care is needed with the interpretation of the phrase ‘the same
region’ due to the diffeomorphism invariance. To make it precise, something
has to be said about how regions of the different spacetimes involved are to
be compared with each other. Secondly, the solution defined on this common
region depends continuously on the initial data, where continuity is again
defined in terms of Sobolev norms. In non-compact situations it is appropriate
to use local Sobolev norms for this, i.e. the Sobolev norms of restrictions of
a function to compact sets.

Rather than make this precise in general we will restrict to one case where
the formulation of the statement is relatively simple, but which is still general
enough to give a good idea of the basic concepts. Consider initial data sets
for the Einstein equations on a compact manifold S. For definiteness let us
restrict to the vacuum case. As has been discussed above, solutions can be
constructed by using the harmonically reduced equations. One step in this
process is to associate to geometric data (hab, χab) full data (gαβ , ∂tgαβ). For
each of these pairs let us choose the topology of the Sobolev space Hs(S)
for the first member and that of Hs−1(S) for the second. Then standard
properties of Sobolev spaces show that if s is sufficiently large the mapping
from geometric data to full data is continuous. Suppose now that we have
one particular solution of the Einstein vacuum equations with data on S.
The corresponding solution of the harmonically reduced equations exists on
some region of the form S× [−T, T ]. If s is sufficiently large then there exists



The Cauchy Problem 207

an open neighbourhood of the given data in Hs(S) × Hs−1(S) such that
for any data in this neighbourhood there exists a corresponding solution in
Hs(S×[−T, T ]). Moreover the mapping from data to solutions defined on this
neighbourhood is continuous (in fact differentiable). This has been proved by
Choquet-Bruhat [18].

The theorem concerning a compact initial hypersurface can also be mod-
ified to give a local statement of the following type. Let initial data for the
Einstein equations be given on some manifold S and suppose that a corre-
sponding solution is given on a manifold M . There is a neighbourhood U of
S where harmonic reduction is possible globally. This identifies U with an
open subset of S × R. This contains a set of the form V × [−T, T ] (for some
open subset V of S and some T > 0) which contains any given point of the
initial hypersurface. If we cut off the the initial data for the harmonically
reduced equations and use the domain of dependence, we can use the above
statement for a compact initial hypersurface to get continuous dependence on
initial data for a possibly smaller set V ′ × [−T ′, T ′]. Summing up, each point
sufficiently close to the initial hypersurface has a neighbourhood W1 with
compact closure such that there is an open subset W2 of the initial hyper-
surface with compact closure such that the following properties hold. If the
restriction of an initial data set for the Einstein equations is sufficiently close
to that of the original data set in Hs(W2) then there exists a correspond-
ing solution of class Hs on a neighbourhood of W1. Moreover, the resulting
mapping from Hs(W2) to Hs(W1) is continuous.

5.4 Matter Models

To specify a matter model in general relativity three elements are required.
The first is a set of tensors (or perhaps other geometrical objects) on space-
time which describe the matter fields. The second is the equations of motion
which are to be satisifed by these fields. The third is the expression for the
energy-momentum tensor in terms of the matter fields which is to be used to
couple the matter to the Einstein equations. Note that in general both the
matter field equations and the expression for the energy-momentum tensor
involve the space-time metric. Thus it is impossible to consider matter in
isolation from the space-time metric. In solving the Cauchy problem it is
necessary to deal with the coupled system consisting of the Einstein equations
and the equations of motion for the matter fields.

There are two broad classes of matter models which are considered in gen-
eral relativity, the field theoretical and phenomenological matter models. The
distinction between these is not sharply defined but is useful in order to struc-
ture the different models. The intuitive idea is that the field theoretic matter
models correspond to a fundamental description while the phenomenological
models represent an effective description of matter which may be useful in
certain situations. Within the context of classical general relativity, which is
the context of this article, the pretension of the field theoretic matter models
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to be more fundamental is not well founded since on a fundamental level the
quantum mechanical nature of matter should be taken into account.

Before going further, a general remark on the Einstein-matter equations
is in order. Suppose that in any given coordinate system the matter equa-
tions can be written in symmetric hyperbolic form in terms of a variable u.
Consider the system obtained by coupling the harmonically reduced Einstein
equations, written in first order symmetric hyperbolic form, to the sytem
for u. If the coupling is only by terms of order zero then the combined sys-
tem is symmetric hyperbolic and a local existence theorem for the reduced
Einstein-matter system is obtained. The condition for this to happen is that
the equations for the matter fields contain at most first derivatives of the
metric (in practice the Christoffel symbols) and that the energy-momentum
tensor contains no derivatives of u. When these conditions are satisfied, local
existence for the Einstein-matter equations (not just the reduced equations)
can be proved using the same strategy as we presented in the vacuum case.
The fact, which should hold for any physically reasonable matter model, that
the energy-momentum tensor is divergence free as a consequence of the mat-
ter field equations, can be is used derive the equation which allows it to be
proved that the harmonic condition propagates.

It would be unreasonable to try and describe here all the matter models
which have ever been used in general relativity. We will, however, attempt to
give a sufficiently wide variety of examples to illustrate most of the important
features to be expected in general. We start with the field theoretic models.

The simplest case is where the matter field is a single real-valued function
φ. The equations of motion are:

∇α∇αφ = m2φ + V ′(φ)

Here m is a constant and V is a smooth function which is O(φ3) for φ close to
zero. A typical example would be V (φ) = φ4. The energy-momentum tensor
is:

Tαβ = ∇αφ∇βφ− [(1/2)(∇γφ∇γφ) + m2φ2 + 2V (φ)]gαβ

The equation for φ is a nonlinear wave equation and so may be reduced
to a symmetric hyperbolic system. When it is coupled to the harmonically
reduced Einstein equations via the energy-momentum tensor above and the
whole system reduced to first order there is no coupling in the principal part.
As mentioned above this is enough to allow a local existence theorem to
be proved. Note that the splitting off of the nonlinear term V and the sign
condition following from the form m2 of the coefficient in the linear term
are irrelevant for the local well-posedness of the equations. On the one hand
they are motivated by considerations of the physical interpretation of the
equations. On the other hand they have an important influence on the global
behaviour of solutions. This matter model is often referred to as ‘the scalar
field’ , although when used without qualification this often means the special
case m = 0, V = 0.
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The scalar field can be thought of as a mapping into the real line. It
can be generalized by considering mappings into a Riemannian manifold N .
An equivalent of the massless scalar field with vanishing potential is the
nonlinear σ-model or wave map as it is often known to physicists and math-
ematicians respectively. It is a mapping from space-time into a manifold N
with Riemannian metric h called the target manifold. The field equations
and energy-momentum tensor have a coordinate-invariant meaning but we
will content ourselves with giving the expressions in coodinate systems on M
and N . The field equations are

∇α∇αφA + ΓA
BC(φ)∇αφB∇αφC = 0

where ΓA
BC are the Christoffel symbols of h in some coordinate system. The

energy-momentum tensor is:

Tαβ = hAB [∇αφA∇βφ
B − (1/2)(∇γφ

A∇γφB)gαβ ]

The special case where N is the complex plane with the flat Euclidean metric
corresponds to the complex scalar field. In contrast to the case of the scalar
field, the wave map does not allow the addition of a mass term or a potential
term in any obvious way. If N has the structure of a vector space there is an
obvious way of defining a mass term and further structure on N may lead
to natural ways of defining a potential. These features occur in the case of
Higgs fields. It may be noted that the wave maps considered here, which are
sometimes also called hyperbolic harmonic maps, are related mathematically
to the harmonic gauge discussed in Sect. 4. The role of the connection Γ̄ in
Sect. 4 is played here by the Levi–Civita connection of the target manifold.

One of the most familiar matter models in general relativity is the Maxwell
field. This is described by an antisymmetric tensor Fαβ . The equations of mo-
tion for the source-free Maxwell field are ∇αFαβ = 0 and ∇αFβγ +∇βFγα +
∇γFαβ = 0 and the energy-momentum tensor is

Tαβ = Fα
γFβγ − (1/4)F γδFγδgαβ

The second set of Maxwell equations can be solved locally by writing Fαβ =
∇αAβ −∇βAα for a potential Aα. Then the other equations can be regarded
as second order equations for Aα. Note, however, that if space-time has a
non-trivial topology then it may be impossible to find a global potential
which reproduces a given field Fαβ . In the same way that the scalar field
can be generalized to get wave maps, the Maxwell field can be generalized to
get Yang–Mills fields. We will not give the global description of these fields
involving principal fibre bundles but only give expressions in local coordinates
and a local gauge. The model is defined by the choice of a Lie algebra (which
we describe via a basis) and a positive definite quadratic form on the Lie
algebra with components hIJ in this basis. Let CI

JK be the structure constants
in this basis. The basic matter field is a one-form AI

α with values in the Lie



210 Helmut Friedrich and Alan Rendall

algebra and the field strength is defined by

F I
αβ = ∇αAI

β −∇βA
I
α + CI

JKAJ
αAK

β

The field equations are

∇αF Iαβ + CI
JKAJ

αFKαβ = 0

In the special case where the Lie algebra is one-dimensional (and hence
Abelian) the Yang–Mills equations reduce to the Maxwell equations. Note
however that the Yang–Mills field cannot be described by the field strength
alone. The description in terms of a potential is indispensible.

A complication which arises when studying the initial value problem for
the Yang–Mills or Einstein–Yang–Mills systems is that of gauge invariance.
Although the potential is required it is not uniquely determined. Gauge trans-
formations of the form:

AI
α �→ AI

α + (g−1∇αg)I

leave F I
αβ invariant. Here g is a function taking values in a Lie group with

the given Lie algebra and the expression g−1∇g can naturally be identified
with a Lie-algebra-valued one-form. Fields related by a gauge transformation
describe the same physical system. The ambiguity here is similar to that of
the ambiguity of different coordinate systems in the case of the Einstein equa-
tions. It can be solved in an analogous way by the use of the Lorentz gauge.
This is similar to the harmonic coordinate condition and reduces the Yang–
Mills equations on any background to a system of nonlinear wave equations
which can, if desired, be reduced to a symmetric hyperbolic system. Combin-
ing harmonic coordinates and Lorentz gauge produces a reduced Einstein–
Yang–Mills system which can be handled by the same sort of techniques as
the reduced vacuum Einstein equations. Of course there are a number of
steps which have to be checked, such as the propagation of Lorentz gauge.
All these comments apply equally well to the Einstein–Yang–Mills–Higgs sys-
tem obtained by coupling the Yang–Mills field to a Higgs field. (Now gauge
transformations for the Higgs field must also be specified.)

A field theoretic matter model whose Cauchy problem does not fit easily
into the above framework is that given by the Dirac equation. It has been
discussed in Sect. 4.4.

Probably the best known phenomenological matter model in general rel-
ativity is the perfect fluid. This has already been discussed at some length in
Sect. 4.2. Here we mention some complementary aspects. Recall that the ba-
sic matter fields are the energy density ρ, a non-negative real-valued function,
and the four-velocity Uα, a unit timelike vector field. The energy-momentum
tensor is given by

Tαβ = (ρ + p)UαUβ + pgαβ
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in the signature used here, namely (−,+,+,+). The pressure p is given in the
isentropic case in terms of an equation of state p = h(ρ). The usual assump-
tions on this equation of state is that it is a non-negative continuous function
defined on an interval [ρ0,∞) which is positive for ρ > 0. Also it should be
C1 for ρ > 0 with positive derivative h′(ρ) = dp/dρ there. The equations of
motion of the fluid, the Euler equations, are given by the condition that the
energy-momentum tensor should be divergence-free. The Euler equations can
be written as a well-posed symmetric hyperbolic system in terms of the basic
variables provided we restrict to cases where ρ ≥ C > 0 for some C > 0.
Here the condition h′ > 0 is crucial. In the study of spatially homogeneous
cosmological models the equation of state p = kρ with k < 0 is sometimes
considered. We emphasize that a fluid with an equation of state of this kind
cannot be expected to have a well-posed initial value problem. This has to do
with the fact that the speed of sound, which is the square root of h′, is imag-
inary in that case. In Sect. 5.5 we prove a related but simpler result, namely
that in special relativity the Euler equations with this equation of state, lin-
earized about a constant state, have an ill-posed initial value problem. The
system obtained by coupling the Euler equations to the harmonically reduced
Einstein equations can be written as a symmetric hyperbolic system in the
case that the Euler equations can be written symmetric hyperbolic in terms
of the basic variables, as stated above.

In the case where the density is everywhere positive, writing the Euler
equations in symmetric hyperbolic form is not trivial. One approach is to
take ρ and the spatial components U i of the velocity as variables and to
express U0 in terms of the U i and the metric via the normalization condition
UαUα = −1 (see [87]). Another possibility (see [15]) is to consider the Euler
equations as evolution equations for ρ and Uα and treat the normalization
condition as a constraint, whose propagation must be demonstrated. The
treatments above are limited to the isentropic Euler equations. For a fluid
which is not isentropic the conservation equation for the energy-momentum
tensor must be supplemented by the equation of conservation of entropy
uα∇αs = 0. The equation of state can then be written in the form p = h(ρ, s)
or, equivalently, in the form p = f(n, s), where n is the number density of
particles. We are not aware that a local existence theorem non-isentropic
Euler equations has been proved by a generalization of the method for the
isentropic case just outlined, although there is no reason to suppose that
it cannot be done, provided the condition ∂h/∂ρ > 0 is satisfied. As we
saw in Sect. 4.2, the Einstein equations coupled to the non-isentropic Euler
equations can be brought into symmetric hyperbolic form by introducing
additional variables in a suitable way, following [39]. The Cauchy problem
for the general (i.e. not necessarily isentropic) Euler equations coupled to the
Einstein equations had much earlier been solved by other means by Choquet-
Bruhat using the theory of Leray hyperbolic systems [17].
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If it is desired to show the existence of solutions of the Einstein–Euler
system representing dynamical fluid bodies (such as oscillating stars) then
problems arise. Either the density must become zero somewhere, in which
case the Euler equations as written in the usual variables fail to be symmetric
hyperbolic there, or at least the density must come arbitrarily close to zero
at infinity, which is almost as bad. Treating this situation as a pure initial
value problem is only possible under restrictive circumstances [76] and the
general problem is still open. It would seem more promising to try to use the
theory of initial boundary value problems, explicitly taking account of the
boundary of the fluid. So far this has only been achieved in the spherically
symmetric case with ρ0 > 0 [61].

One case of a fluid which is frequently considered in general relativity is
dust. This is defined by the condition that the presure should be identically
zero. Since in that case h′ = 0 the straightforward method of writing the fluid
equations as a symmetric hyperbolic system does not work. The symmetric
hyperbolic system of [39] discussed in Sect. 4.2 also covers the dust case as
does the existence theorem of Choquet-Bruhat [17] using a Leray hyperbolic
system.

The next phenomenological matter model we will consider comes from
kinetic theory. It does not quite fit into the framework we have used so far to
describe matter models since the fundamental matter field is a non-negative
function f on the cotangent bundle of space-time. (Often the case of particles
with a fixed mass is considered in which case it is defined on the subset of
the cotangent bundle defined by the condition gαβpαpβ = −1, known as
the mass shell.) The idea is that the matter consists of particles which are
described statistically with respect to their position and momentum. The
function f represents the density of particles. The geodesic flow of the space-
time metric defines a vector field (Liouville vector field) on the cotangent
bundle. Call it L. This flow describes the evolution of individual test particles.
The equation of motion for the particles is Lf = Q(f) where Q(f) is an
integral expression which is quadratic in its argument. This is the Boltzmann
equation. It describes collisions between the particles in a statistical way. The
case Q = 0 is the collisionless case, where the equation Lf = 0 obtained is
often called the Vlasov equation. The energy-momentum tensor is defined by:

Tαβ =
∫

fpαpβdω(p)

where dω(p) represents a natural measure on the cotangent space or mass
shell, depending on the case being considered.

The coupled Einstein–Boltzmann system in harmonic coodinates cannot
be a hyperbolic system is any usual sense for the simple reason that it is not
even a system of differential equations, due to the integrals occurring. Never-
theless, the techniques used to prove existence and uniqueness for hyperbolic
equations can be adapted to prove local existence for the Einstein–Boltzmann
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system [7]. In contrast to the case of the perfect fluid nothing particular hap-
pens when the energy density vanishes so that there is no problem in de-
scribing isolated concentrations of matter. The Einstein–Vlasov system can
be used to describe globular clusters and galaxies. For the analogue of this
in Newtonian theory see [13]. Literature on the relativistic case can be found
in [85].

Another kind of phenomenological matter model is elasticity theory. Apart
from its abstract interest, self-gravitating relativistic elasticity is of interest
for describing the solid crust of neutron stars. As in the case of a perfect fluid
the field equations are equivalent to the equation that the divergence of the
energy-momentum tensor is zero. What is different is the nature of the matter
variables and the way they enter into the definition of the energy-momentum
tensor. This is complicated and will not be treated here. The Cauchy problem
for the Einstein equations coupled to elasticity theory has been discussed by
Choquet-Bruhat and Lamoureux–Brousse [21]. A local existence theorem for
the equations of relativistic elasticity has been proved by Pichon [73] for data
belonging to Gevrey classes. These are classes of functions which are more
special that C∞ functions in that the growth of their Taylor coefficients is
limited. However they do not have the property of analytic functions, that
fixing the function on a small open set determines it everywhere.

In non-relativistic physics, the Euler equations are an approximation to
the Navier–Stokes equations where viscosity and heat conduction are ne-
glected. The Navier–Stokes equations are dissipative with no limit to the
speed at which effects can propagate. Mathematically this has the effect that
the equations are parabolic with no finite domain of dependence. It is prob-
lematic to find an analogue of the Navier–Stokes equations in general rel-
ativity which takes account of the effects of diffusion and heat conduction.
One possibility is to start from the Boltzmann equation, which does have a
finite domain of dependence and try to do an expansion in the limit where
the collision term is large. This is analogous to the Hilbert and Chapman–
Enskog expansions in non-relativistic physics. The first attempts to do this led
to equations which probably have no well-posed Cauchy problem (Landau–
Lifschitz and Eckart models). Hiscock and Lindblom [53] have shown that
the linearization of these equations about an equilibrium state have solutions
which grow at arbitrarily large exponential rates. In response to this other
classes of models were developed where the fluid equations are symmetric
hyperbolic. (For information on this see [46]). These models do have a well-
posed Cauchy problem and the main difficulty seems to be to decide between
the many possible models. Since the variables used to formulate the sym-
metric hyperbolic system for the fluid are not differentiated in forming the
energy-momentum tensor, the system obtained by coupling these fluids to
the Einstein equations can be written in symmetric hyperbolic form.

More general matter models can be obtained from those already men-
tioned by combining different types of matter field. For instance there is the
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charged scalar field which combines a scalar field and a Maxwell field. This
often produces no extra difficulties at all for the local in time Cauchy problem
due to the fact, mentioned above, that the system obtained by taking two
symmetric hyperbolic systems together is also symmetric hyperbolic, pro-
vided the coupling between the two systems is via terms of order zero. It
is also routine to allow charged particles in a kinetic model, obtaining the
Einstein–Maxwell–Boltzmann system [7]. Charged fluids are more compli-
cated. The local in time Cauchy problem has been treated in two cases, those
of zero conductivity and infinite conductivity. The latter model is also known
as magnetohydrodynamics. It has been shown to be have a well-posed initial
value problem only for data in Gevrey classes [67], [68].

5.5 An Example of an Ill-Posed Initial Value Problem

It may be hard to appreciate the significance of a system of equations having
a well-posed initial value problem since most examples which come up in
practice do have this property. In this section we present an ill-posed example
which is close to examples which relativists are familiar with. Consider the
special relativistic Euler equations with equation of state p = kρ where k < 0.
A special solution is given by constant density and zero spatial velocity. Now
consider the equations obtained by linearizing the Euler equations about this
background solution. The unknowns in the linearized system will be denoted
by adding a tilde to the corresponding unknowns in the nonlinear system.
For simplicity we take the background density to be unity. The linearized
equations are:

∂tρ̃ = −2(1 + k)∂aũ
a

∂tũ
a = − k

2(1 + k)
δab∂bρ̃

It will be shown that given any T > 0 there exist periodic initial data (ρ̃0, ũ
a
0)

of class C∞ such that it is not true that there is a unique corresponding
solution, periodic in the space coordinates, on the time interval [0, T ]. The
condition of periodicity here does not play an essential role. It is adopted for
convenience. Instead of thinking of smooth periodic functions on R

3 with can
equally well think in terms of smooth functions on a torus T 3. The space of
smooth functions on T 3 can be made into a topological vector space X in a
standard way. Convergence of functions in the sense of this topology means
uniform convergence of the functions and their derivatives of all orders. In a
similar way the space of smooth functions on [0, T ] × T 3 can be made into
a topological vector space Y . These are Fréchet spaces [81]. The unknown in
the linearized Euler equations can be thought of as an element of X4 and
the data as an element of Y 4. Let Z be the closed linear subspace of X4

consisting of solutions of the linearized Euler equations. Consider the linear
mapping L : Z → Y 4 defined by restricting solutions to t = 0. It is continuous
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with respect to the relevant topologies. If existence and uniqueness held for
all initial data then this linear map would be invertible. Hence, by the open
mapping theorem [81], it would have continuous inverse. What this means
concretely is that given any sequence (ρ̃0,n, ũ

a
0,n) which is uniformly bounded

together with each of its derivatives, the corresponding sequence of solutions
(which exists by assumption) must also be bounded together with each of each
of its derivatives. Thus to prove the desired theorem it is enough to exhibit
a uniformly bounded sequence of initial data and a corresponding sequence
of solutions which is not uniformly bounded. This can be done explicitly as
follows:

ρ̃0,n = sinnx

ũa
0,n = 0

ρ̃n = sinnx cosh(n
√
−kt)

ũ1
n =

√
−kn

2(1 + k)
sinnx sinh(n

√
−kt)

ũ2
n = ũ3

n = 0

From these explicit formulae we get an idea what is going wrong. Fourier
modes of increasing frequencies of the initial data grow at increasing expo-
nential rates. In the case of a fluid where the equation of state has a positive
value of k the hyperbolic functions in the above formulae are replaced by
trigonometric ones and the problem does not arise.

In fact in the above example the density perturbation satisfies a second
order equation which is elliptic. After a rescaling of the time coordinate it
reduces to the Laplace equation. The computation which has just been done
should be compared with the remarks on the Cauchy problem for the Laplace
equation on p. 229 of [27], Vol. 2. The corresponding example for the Laplace
equation goes back to Hadamard [49].

Solutions of the Einstein equations coupled to a fluid with an equation of
state of the type considered in this section have been considered in the context
of inflationary models [10], [93]. While this is unproblematic for spatially
homogeneous models, the above ill-posedness result suggests strongly that
this kind of model cannot give reasonable results in the inhomogeneous case.

Some general comments on well-posedness and stability will now be made.
Suppose a solution of a system of evolution equations is given. Assume for
simplicity that this solution is time-independent, although a similar discus-
sion could be carried out more generally. The solution is called stable if in
order to ensure that a solution stays close to the original solution to any
desired accuracy, it is enough to require it to be sufficiently close at one time.
Closeness is measured in some appropriate norm. Well-posedness has no in-
fluence on stability in this sense. Already for ordinary differential equations
with smooth coefficients, which always have a well-posed initial value prob-
lem, stability does not in general hold. Solutions of the linearized sytem about
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the given solution can grow exponentially. However there is a constant k such
that no linearized solution can grow faster than Cekt. This is a rather general
feature of well-posed evolution equations. For instance any linear symmetric
hyperbolic system allows an exponential bound with some constant k inde-
pendent of the solution. If no such bound is possible, then it is said that there
is a violent instability. (Cf. [69], Sect. 4.4 for this terminology.) The presence
of a violent instability is closely related to ill-posedness, as can be seen in the
above example.

5.6 Symmetries

If an initial data set for the Einstein-matter equations possesses symmetries,
then we can expect these to be inherited by the corresponding solutions. This
will be discussed here in the case of the vacuum Einstein equations. There is
nothing in the argument which obviously makes essential use of the vacuum
condition and it should extend to reasonable types of matter. It makes use
of the maximal Cauchy development and so any restrictions on the matter
model which might come up there would appear again in the present context.

The following only covers symmetries of spacetime which leave a given
Cauchy surface invariant. It is based on group actions rather than Killing
vectors. A more extensive discussion of symmetries of spacetime and their
relations to the Cauchy problem can be found in Sect. 2.1 of [26].

By a symmetry of an initial data set (S, hab, χab) for the vacuum Einstein
equations we mean a diffeomorphism ψ : S → S which leaves hab and χab

invariant. Let φ be the embedding of S into its maximal Cauchy development.
Then φ̄ = φ◦ψ also satisfies the properties of the embedding in the definition
of the maximal Cauchy devlopment. Hence, by uniqueness up to isometry,
there exists an isometry ψ̄ of the maximal Cauchy development onto itself
such that ψ̄ ◦ φ = φ̄. This means that ψ̄ ◦ φ = φ ◦ ψ. Thus ψ̄ is an isometry
of M whose restriction to φ(S) is equal to ψ. We see that a symmetry of
the initial data extends to a symmetry of the solution. Next we wish to
show that this extension is unique. Since a general theorem of Lorentzian
(or Riemannian) geometry says that two isometries which agree on a open
set agree everywhere it suffices to show that any two isometries ψ̄ with the
properties described agree on a neighbourhood of φ(S). Let p be a point of
φ(S). A neighbourhood of p can be covered with Gauss coordinates based
on φ(S). An isometry preserves geodesics and orthogonality. Hence if, when
expressed in Gauss coordinates, it is the identity for t = 0 it must be the
identity everywhere. This completes the proof of the uniqueness of ψ̄.

Now consider the situation where a Lie group G acts on S in such a
way that each transformation ψg of S corresponding to an element of the
group is a symmetry of the initial data. Let H be the isometry group of
the maximal Cauchy development and HS the group of all isometries of the
maximal Cauchy development which leave φ(S) invariant. The group HS is
a closed subgroup of the Lie group H and thus is itself a Lie group. Each
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ψg is the restriction of a unique element ψ̄g of HS . Using uniqueness again
we must have ψ̄gh = ψ̄gψ̄h for all elements g and h of G. Thus we obtain a
homomorphism from G to HS . This shows that there exists an action of the
group G on M by isometries which extends the action on φ(S) arising from
the original action on S by means of the identification using φ. However this
argument does not show that the resulting action of G is smooth. To show
this consider first the group HI of all symmetries of the initial data. It is a
closed subgroup of the isometry group of h and therefore has the structure
of a Lie group. The above considerations show that restriction defines an
isomorphism of groups from HS to HI . (We identify S with φ(S) here.) If
we knew that this mapping was continuous a general theorem on Lie groups
[92] would show that it is also an isomorphism of Lie groups. The continuity
can be seen by noting that the topology of an isometry group coming from
its Lie group structure coincides with the compact open topology [62]. The
continuity of the restriction mapping in the compact open topology follows
immediately from the definitions. We conclude that as Lie groups HS and
HI can be identified.

Now we come back to the action of G. The action of G on initial data
is a smooth mapping G × S → S. It is the composition of a smooth homo-
morphism from G to HI with the action of HI on S. By the comments of
the last paragraph this can be identified with the composition of a smooth
homomorphism from G to HS with the action of HS . In this way we obtain
a smooth action of G on M which leaves S invariant and restricts to the
original action on the initial data. It is the action of G which we previously
considered.

6 Outlook

This article is intended to be an informative tour through its subject, rather
than an exhaustive account. The latter would in any case be impossible in
an article of this length, given the amount of literature which now exists.
The aim of this section is to mention a few of the important things which
have been left out, and to direct the reader to useful sources of information
concerning these. A good starting point is the review article of Choquet-
Bruhat and York [23] which is still very useful. (See also [34].) There is an
extensive treatment of the constraints in reference [23]. For a selection of
newer results on the constraints, see e.g. [5], [6], [57], [58], [59] and [20].

The most obvious omission of the present article is the lack of statements
on the global Cauchy problem. A review with pointers to further sources can
be found in [78]. This material is too recent to be discussed in [23] and a
lot has happened since then. It is natural that once some of the basic local
questions had been solved attention turned to global issues. The latter are
now central to present research on the Cauchy problem. Most of the existing
results concern spacetimes with high symmetry, although in the meantime
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there are also a few theorems on space-times without symmetries which are
small but finite perturbations of space-times of special types. This is an area
which is developing vigorously at the moment. Often the statements obtained
about global existence of solutions are accompanied by information on the
global qualitative properties of the solutions. A discussion of the asymptotic
behaviour of a particular class of solutions and its relevance for the modelling
of certain physical systems can be found in [40] and [41].

In the introduction we mentioned the possible applications of ideas con-
nected with the Cauchy problem to analytical and numerical approximations.
Up to now progress on establishing an effective interaction between theoret-
ical developments and the applications of approximate methods to concrete
physical problems such as the generation of gravitational waves has been lim-
ited. For instance, little has been done on the question of proving theorems
on analytical approximations in general relativity since [28], [75], and [77].
There is no shortage of things to be done. For instance one tempting goal
would be a precise formulation and justification of the quadrupole formula.

As for the link to numerical relativity, the discussions in Sect. 4, apart
from their interest for purely analytical reasons, could potentially be ex-
ploited for improving numerical codes. Many new hyperbolic reductions have
been suggested recently with the aim of providing equations which would
ensure a stable time evolution. We have added a few more. We also pointed
out various different gauge conditions. Their usefulness for stable long-time
numerical calculations still has to be explored. We have seen that different
representations of the field equations and different formalisms allow us to em-
ploy different gauge conditions. The possibilities of controlling the lifetime of
a gauge by a judicious choice of gauge source functions have neither been
investigated analytically nor numerically in a systematic way.

One of the main interests in the analysis of the initial boundary problem
lies in the fact that many approaches to numerical relativity require the in-
troduction of timelike boundary hypersurfaces which reduce the calculations
to spatially finite grids. A good analytical understanding of the initial bound-
ary value problem does not guarantee the stability of long-time evolutions for
problems with timelike boundaries, but the latter are likely to fail without
a proper understanding of the analytical background. In this respect we also
consider the analytical investigations of the conformal Einstein equations (cf.
[40], [41]) as an opportunity for numerical relativity. They allow us in princi-
ple to calculate entire spacetimes, including their asymptotic behaviour, on
finite grids without the need to introduce artificial boundaries in the physical
spacetime.

Another place where the theory of the Cauchy problem could have some-
thing to contribute is the application of numerical methods developed for
systems of conservation laws (or, more generally, systems of balance laws)
to the Einstein equations, a procedure which has been popular recently. In a
certain sense this means accepting an analogy between the Einstein equations
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and the Euler equations. At the moment this amounts to no more than the
fact that both systems are quasi-linear hyperbolic and can be formulated as
systems of balance laws. Unlike the Euler equations, the Einstein equations
do not appear to admit a preferred formulation of this kind. There are differ-
ent alternatives and no known criterion for choosing between them. It is very
tempting to import the vast amount of knowledge which has been accumu-
lated concerning the numerical solution of the Euler equations into general
relativity. On the other hand it is not at all clear how many of these tech-
niques are really advantageous for, say, the vacuum Einstein equations. One
might hope that analytical theory could throw some light on these questions.

There can be little doubt that increased cooperation between people work-
ing on analytical and numerical aspects of the evolution of solutions of the
Einstein equations would lead to many new insights. As both fields progress
cases where a rewarding collaboration would be possible are bound to present
themselves. It suffices for someone to show the initiative required to profit
from this situation.

An open problem which has been touched on already is that of the exis-
tence of solutions of the Einstein–Euler system describing fluid bodies. This
kind of free boundary problem is poorly understood even in classical physics,
although there has been significant progress recently [95]. The central impor-
tance of this becomes clear when it is borne in mind that the usual applica-
tions of gravitational theory in astrophysics (except for cosmology) concern
self-gravitating bodies.

We hope to have succeeded in showing in this article that the study of the
Cauchy problem for the Einstein equations is a field which presents a variety
of fascinating challenges. Perhaps, with luck, it will stimulate others to help
tackle them.
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Commun. Part. Diff. Eq. 15, 595–645.
49. Hadamard, J. (1952) Lectures on Cauchy’s problem in linear partial differential

equations. Dover, New York.



222 Helmut Friedrich and Alan Rendall

50. Hamilton, R. S. (1982) The inverse function theorem of Nash and Moser. Bull.
Amer. Math. Soc. 7, 65–222.

51. Hartman, P. (1982) Ordinary differential equations. Birkhäuser, Boston.
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Département d’Astrophysique Relativiste et de Cosmologie,
Centre National de la Recherche Scientifique (UMR 8629),
Observatoire de Paris, 92195 Meudon Cedex, France

1 Introduction

1.1 On Approximation Methods in General Relativity

Let us declare that the most important devoir of any physical theory is to
draw firm predictions for the outcome of laboratory experiments and astro-
nomical observations. Unfortunately, the devoir is quite difficult to fulfill in
the case of general relativity, essentially because of the complexity of the
Einstein field equations, to which only few exact solutions are known. For
instance, it is impossible to settle the exact prediction of this theory when
there are no symmetry in the problem (as is the case in the problem of the
gravitational dynamics of separated bodies). Therefore, one is often obliged,
in general relativity, to resort to approximation methods.

It is beyond question that approximation methods do work in general rel-
ativity. Some of the great successes of this theory were in fact obtained using
approximation methods. We have particularly in mind the test by Taylor
and collaborators [1–3] regarding the orbital decay of the binary pulsar PSR
1913+16, which is in agreement to within 0.35% with the general-relativistic
post-Newtonian prediction. However, a generic problem with approximation
methods (especially in general relativity) is that it is non trivial to define a
clear framework within which the approximation method is mathematically
well-defined, and such that the results of successive approximations could
be considered as theorems following some precise (physical and/or technical)
assumptions. Even more difficult is the problem of the relation between the
approximation method and the exact theory. In this context one can ask:
What is the mathematical nature of the approximation series (convergent,
asymptotic, . . .)? What its “reliability” is (i.e., does the approximation series
come from the Taylor expansion of a family of exact solutions)? Does the
approximate solution satisfy some “exact” boundary conditions (for instance
the no-incoming radiation condition)?

Since the problem of theoretical prediction in general relativity is com-
plex, let us distinguish several approaches (and ways of thinking) to it, and
illustrate them with the example of the prediction for the binary pulsar. First
we may consider what could be called the “physical” approach, in which one
analyses the relative importance of each physical phenomena at work by using

B.G. Schmidt (Ed.): LNP 540, pp. 225−271, 1999.
© Springer-Verlag Berlin Heidelberg 1999



226 Luc Blanchet

crude numerical estimates, and where one uses only the lowest-order approx-
imation, relating if necessary the local physical quantities to observables by
means of balance equations (perhaps not well defined in terms of basic theo-
retical concepts). The physical approach to the problem of the binary pulsar
is well illustrated by Thorne in his beautiful Les Houches review [4] (see also
the round table discussion moderated by Ashtekar [5]): one derives the loss of
energy by gravitational radiation from the (Newtonian) quadrupole formula
applied formally to point-particles, assumed to be test-masses though they
are really self-gravitating, and one argues “physically” that the effect comes
from the variation of the Newtonian binding energy in the center-of-mass
frame – indeed, on physical grounds, what else could this be (since we expect
the rest masses won’t vary)? The physical approach yields the correct result
for the rate of decrease of the period of the binary pulsar. Of course, think-
ing physically is extremely useful, and indispensable in a preliminary stage,
but certainly it should be completed by a solid study of the connection to
the mathematical structure of the theory. Such a study would a posteriori
demote the physical approach to the status of “heuristic” approach. On the
other hand, the physical approach may fall short in some situations requiring
a sophisticated mathematical modelling (like in the problem of the dynam-
ics of singularities), where one is often obliged to follow one’s mathematical
rather than physical insight.

A second approach, that we shall qualify as “rigorous”, has been advo-
cated mainly by Jürgen Ehlers (see, e.g., [6]). It consists of looking for a high
level of mathematical rigor, within the exact theory if possible, and otherwise
using an approximation scheme that we shall be able to relate to the exact
theory. This does not mean that we will be so much wrapped up by math-
ematical rigor as to forget about physics. Simply, in the rigorous approach,
the prediction for the outcome of an experiment should follow mathematically
from first theoretical principles. Clearly this approach is the one we should
ideally adhere to. As an example, within the rigorous approach, one was not
permitted, by the end of the seventies, to apply the standard quadrupole
formula to the binary pulsar. Indeed, as pointed out by Ehlers et al [7], it
was not clear that gravitational radiation reaction on a self-gravitating sys-
tem implies the standard quadrupole formula for the energy flux, notably
because computing the radiation reaction demands a priori three non-linear
iterations of the field equations [8], which were not fully available at that
time. Ehlers and collaborators [7] remarked also that the exact results con-
cerning the structure of the field at infinity (nota bly the asymptotic shear
of null geodesics whose variation determines the flux of radiation) were not
connected to the actual dynamics of the binary.

Maybe the most notable result of the rigorous approach concerns the
relation between the exact theory and the approximation methods. In the
case of the post-Newtonian approximation (limit c →∞), Jürgen Ehlers has
provided with his frame theory [9–11] a conceptual framework in which the
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post-Newtonian approximation can be clearly formulated (among other pur-
poses). This theory unifies the theories of Newton and Einstein into a single
generally covariant theory, with a parameter 1/c taking the value zero in the
case of Newton and being the inverse of the speed of light in the case of
Einstein. Within the frame theory not only does one understand the limit re-
lation of Einstein’s theory to Newton’s, but one explains why it is legitimate
when describing the predictions of general relativity to use the common-sense
language of Newton (for instance thinking that the trajectories of particles
in an appropriately defined coordinate system take place in some Euclidean
space, and viewing the coordinate velocities as being defined with respect to
absolute time). It was shown by Lottermoser [12] that the constraint equa-
tions of the (Hamiltonian formulation of the) Ehlers frame theory admit
solutions with a well-defined post-Newtonian limit. Further in the spirit of
the rigorous approach, we quote the work of Rendall [13] on the definition
of the post-Newtonian approximation, and the link to the post-Newtonian
equations used in practical computations. (See also [14,15] for an attempt
at showing, using restrictive assumptions, that the post-Newtonian series is
asymptotic.)

The important remarks of Jürgen Ehlers et al [7] on the applicability of
the quadrupole formula to the binary pulsar stimulated research to settle
down this question with (al least) acceptable mathematical rigor. The ques-
tion was finally answered positively by Damour and collaborators [16–19],
who obtained in algebraically closed form the general-relativistic equations
of motion of two compact objects, up to the requisite 5/2 post-Newtonian
order (2.5PN order or 1/c5) where the gravitational radiation reaction force
appears. This extended to 2.5PN order the work at 1PN of Lorentz and
Droste [20], and Einstein, Infeld and Hoffmann [21]. The net result is that
the dynamics of the binary pulsar as predicted by (post-Newtonian) general
relativity is in full agreement both with the prediction of the quadrupole
formula, as derived earlier within the “physical” approach, and with the ob-
servations by Taylor et al (see [22] for discussion).

Motivated by the success of the theoretical prediction in the case of the
binary pulsar [16–19,22], we shall try to follow in this article the spirit of the
“rigorous” approach of Jürgen Ehlers, notably in the way it emphasizes the
mathematical proof, but we shall also differ from it by a systematic use of
approximation methods. This slightly different approach recognizes from the
start that in certain difficult problems, it is impossible to derive a physical
result all the way through the exact theory without any gap, so that one must
proceed with approximations. But, in this approach, one implements a math-
ematically well-defined framework for the approximation method, and within
this framework one proves theorems that (ideally) guarantee the correctness
of the theoretical prediction to be compared with experiments. Because the
comparison with experiments is the only thing which matters in fine for a
pragmatist, we qualify this third approach as “pragmatic”.
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In this article we describe the pragmatic approach to the problem of
gravitational radiation emitted by a general isolated source, based on the
rigorous post-Minkowskian iteration of the field outside the source [23], and
on the general connection of the exterior field to the field inside a slowly-
moving source [24,25]. Note that for this particular problem the pragmatic
approach is akin to the rigorous one in that it permits to establish some
results on the connection between approximate and exact methods. For in-
stance it was proved by Damour and Schmidt [26] (see also [27,28]) that the
post-Minkowskian algorithm generates an asymptotic approximation to exact
solutions, and it was shown [29] that the solution satisfies to any order in the
post-Minkowskian expansion a rigorous definition of asymptotic flatness at
future null infinity. However it remains a challenge to analyse in the manner
of the rigorous approach the relation to exact theory of the whole formalism
of [23–25,29].

By combining the latter post-Minkowskian approximation and a post-
Newtonian expansion inside the system, it was proved (within this frame-
work of approximations) that the quadrupole formula for slowly-moving,
weakly-stressed and self-gravitating systems is correct, even including post-
Newtonian corrections [30]; and idem for the radiation reaction forces acting
locally inside the system, and for the associated balance equations [31,32].
These results answered positively Ehlers’ remarks [7] in the case of slowly-
moving extended (fluid) systems. However we are also interested in this article
to the application to binary systems of compact objects modelled by point-
masses. Indeed the latter sources of radiation are likely to be detected by
future gravitational-wave experiments, and thus concern the pragmatist. We
shall see how one can address the problem in this case. (When specialized to
point-mass binaries, the results on radiation reaction [31,32] are in agreement
with sepa rate work of Iyer and Will [33,34].) For other articles on the prob-
lem of gravitational radiation from general and binary point-mass sources,
see [35–39].

1.2 Field Equations and the No-Incoming-Radiation Condition

The problem is to find the solutions, in the form of analytic approximations,
of the Einstein field equations in IR4,

Rμν − 1
2
gμνR =

8πG
c4

Tμν , (1)

and thus also of their consequence, the equations of motion of the matter
source, ∇νT

μν = 0. Throughout this work we assume the existence and
unicity of a global harmonic (or de Donder) coordinate system. This means
that we can choose the gauge condition

∂νh
μν = 0 ; hμν ≡ √−ggμν − ημν , (2)
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where g and gμν denote the determinant and inverse of the covariant metric
gμν , and where ημν is an auxiliary flat metric [i.e. ημν = diag(−1, 1, 1, 1) =
ημν ]. The Einstein field equations (1) can then be replaced by the relaxed
equations

��hμν =
16πG
c4

τμν , (3)

where the box operator is the flat d’Alembertian, �� ≡ ��η = ημν∂μ∂ν , and
where the source term is the sum of a matter part and a gravitational part,

τμν ≡ |g|Tμν +
c4

16πG
Λμν . (4)

In harmonic coordinates the field equations take the form of simple wave
equations, but whose source term is actually a complicated functional of the
gravitational field hμν ; notably the gravitational part depends on hμν and its
first and second space-time derivatives:

Λμν = − hρσ∂2
ρσh

μν + ∂ρh
μσ∂σh

νρ +
1
2
gμνgρσ∂λh

ρτ∂τh
σλ

− gμρgστ∂λh
ντ∂ρh

σλ − gνρgστ∂λh
μτ∂ρh

σλ + gρσg
λτ∂λh

μρ∂τh
νσ

+
1
8
(2gμρgνσ − gμνgρσ)(2gλτgεπ − gτεgλπ)∂ρh

λπ∂σh
τε . (5)

The point is that Λμν is at least quadratic in h, so the relaxed field equations
(3) are very naturally amenable to a perturbative non-linear expansion. As
an immediate consequence of the gauge condition (2), the right side of the
relaxed equations is conserved in the usual sense, and this is equivalent to
the equations of motion of matter:

∂ντ
μν = 0 ⇔ ∇νT

μν = 0 . (6)

We refer to τμν as the total stress-energy pseudo-tensor of the matter and
gravitational fields in harmonic coordinates. Since the harmonic coordinate
condition is Lorentz covariant, τμν is a tensor with respect to Lorentz trans-
formations (but of course not with respect to general diffeomorphisms).

In order to select the physically sensible solution of the field equations in
the case of a bounded system, one must choose some boundary conditions
at infinity, i.e. the famous no-incoming radiation condition, which ensures
that the system is truly isolated (no radiating sources located at infinity).
In principle the no-incoming radiation condition is to be formulated at past
null infinity J−. Here, we shall simplify the formulation by taking advantage
of the presence of the Minkowski background ημν to define the no-incoming
radiation condition with respect to the Minkowskian past null infinity J−

M .
Of course, this does not make sense in the exact theory where only exists the
metric gμν and where the metric ημν is fictituous, but within approximate
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(post-Minkowskian) methods it is legitimate to view the gravitational field
as propagating on the flat background ημν , since ημν does exist at any finite
order of approximation.

We formulate the no-incoming radiation condition in such a way that it
suppresses any homogeneous, regular in IR4, solution of the d’Alembertian
equation ��h = 0. We have at our disposal the Kirchhoff formula which ex-
presses h(x′, t′) in terms of values of h(x, t) and its derivatives on a sphere
centered on x′ with radius ρ ≡ |x′ − x| and at retarded time t ≡ t′ − ρ/c:

h(x′, t′) =
∫ ∫

dΩ

4π

[
∂

∂ρ
(ρh) +

1
c

∂

∂t
(ρh)

]
(x, t) (7)

where dΩ is the solid angle spanned by the unit direction (x − x′)/ρ. From
the Kirchhoff formula we obtain the no-incoming radiation condition as a
limit at J−

M , that is r → +∞ with t+ r/c =const (where r = |x|). In fact we
obtain two conditions: the main one,

lim
r→+∞

t+r/c=const

[
∂

∂r
(rhμν) +

1
c

∂

∂t
(rhμν)

]
(x, t) = 0 , (8)

and an auxiliary condition, that r∂λh
μν should be bounded at J−

M , coming
from the fact that ρ in the Kirchhoff formula (7) differs from r [we have
ρ = r − x′.n + O(1/r) where n = x/r].

In fact, we adopt in this article a much more restrictive condition of no-
incoming radiation, namely that the field is stationary before some finite
instant −T in the past:

t ≤ −T ⇒ ∂

∂t
[hμν(x, t)] = 0 . (9)

In addition we assume that before −T the field hμν(x) is of order O(1/r)
when r → +∞. These restrictive conditions are imposed for technical reasons
following [23], since they allow constructing rigorously (and proving theorems
about) the metric outside some time-like world tube r ≡ |x| > R. We shall
assume that the region r > R represents the exterior of an actual compact-
support system with constant radius d < R [i.e. d is the maximal radius of
the adherence of the compact support of Tμν(x, t), for any time t].

Now if hμν satisfies for instance (9), so does the pseudo-tensor τμν built
on it, and then it is clear that the retarded integral of τμν satisfies itself the
same condition. Therefore one infers that the unique solution of the Einstein
equation (3) satisfying the condition (9) is

hμν =
16πG
c4

��−1
R τμν , (10)

where the retarded integral takes the standard form

(��−1
R τ)(x, t) ≡ − 1

4π

∫
d3x′

|x− x′|τ (x′, t− |x− x′|/c) . (11)
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Notice that since τμν depends on h and its derivatives, the equation (10) is to
be viewed rather as an integro-differential equation equivalent to the Einstein
equation (3) with no-incoming radiation.

1.3 Method and General Physical Picture

We want to describe an isolated system, for instance a “two-body system”,
in Einstein’s theory. We expect (though this is not proved) that initial data
sets gμν , ∂tgμν , ρ, v satisfying the constraint equations on the space-like
hypersurface t = t0 exist, and that this determines a unique solution of the
field equations for any time t, which approaches in the case of two bodies
a “scattering state” when t → −∞, in which the bodies move on unbound
(hyperbolic-like) orbits. We assume that the space-times generated by such
data admit a past null infinity J− (or, if one uses approximate methods, J−

M )
with no incoming radiation. (Note that in a situation with initial scattering
the field might not satisfy the rigorous definitions of asymptotic flatness at
J−; see [40–43].) The point to make is that in this class of space-times there
is no degree of freedom for the gravitational field (we could consider other
situations where the motion is influenced by incoming radiation).

Both our technical assumptions of compact support for the matter source
(with constant radius d) and stationarity before the time −T contradict
our expectation that a two-body system follows an unbound orbit in the
remote past. We do not solve this conflict but argue as follows: (i) these
technical assumptions permit to derive rigorously some results, for instance
the expression [given by (52) with (56) below] of the far-field of an isolated
past-stationary system; (ii) it is clear that these results do not depend on
the constant radius d, and furthermore we check that they admit in the
“scattering” situation a well-defined limit when −T → −∞ ; (iii) this makes
us confident that the results are actually valid for a more realistic class of
physical systems which become unbound in the past and are never stationary
(and, even, one can give a posteriori conditions under which the limit −T →
−∞ exists for a general system at some order of approximation).

Suppose that the system is “slowly-moving” [in the sense of (12) below], so
that we can compute the field inside its compact support by means of a post-
Newtonian method, say hμν

in ≡ h
μν

where the overbar refers to the formal
post-Newtonian series. The post-Newtonian iteration (say, for hydrodynam-
ics) is not yet defined to all orders in 1/c, but many terms are known: see the
works of Lorentz and Droste [20], Einstein, Infeld and Hoffmann [21], Fock
[44], Chandrasekhar and collaborators [45–47], Ehlers and followers [48–54],
and many other authors [55–58,30,24].

On the other hand, outside the isolated system, the field is weak every-
where and it satisfies the vacuum equations. Therefore, the equations can
be solved conjointly by means of a weak-field or post-Minkowskian expan-
sion (G → 0), and, for each coefficient of Gn in the latter expansion, by
means of a multipole expansion (valid because we are outside). The general
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Multipolar-post-Minkowskian (MPM) metric was constructed in [23,29] as a
functional of two sets of “multipole moments” ML(t) and SL(t) which were
left arbitrary at this stage (i.e. not connected to the source). The idea of com-
bining the post-Minkowskian and multipole expansions comes from the works
of Bonnor [59] and Thorne [60]. We denote by hμν

ext ≡ M(hμν) the exterior
solution, where M stands for the multipole expansion (as it will turn out,
the post-Minkowskian expansion appears in this formalism to be somewhat
less fundamental than the multipole expansion).

The key assumption is that the two expansions hμν
in = h

μν
and hμν

ext =
M(hμν) should match in a region of common validity for both the post-
Newtonian and multipole expansions. Here is where our physical restriction
to slow motion plays a crucial role, because such an overlap region exists
(this is the so-called exterior near-zone) if and only if the system is slowly-
moving. The matching is a variant of the well-known method of matching
of asymptotic expansions, very useful in gravitational radiation theory [61–
65,30,66,24]. It consists of decomposing the inner solution into multipole mo-
ments (valid in the outside), re-expanding the exterior solution in the near
zone (r/c → 0), and equating term by term the two resulting expansion se-
ries. From the requirement of matching we obtain in [25], and review in Sects.
2 and 3 below, the general formula for the multipole expansion M(hμν) in
terms of the “source” multipole moments (notably a mass-type moment IL

and a current-type JL), given as functionals of the post-Newtonian expan-
sion of the pseudo-tensor, i.e. τμν . [The previous moments ML and SL (re-
ferred below to as “canonical”) are deduced from the source moments after
a suitable coordinate transformation.] In addition the matching equation de-
termines the radiation reaction contributions in the inner post-Newtonian
metric [67,68,32].

To obtain the source multipole moments in terms of basic source para-
meters (mass density, pressure), it remains to replace τμν by the result of an
explicit post-Newtonian iteration of the inner field. This was done to 1PN
order in [30,66], then to 2PN order in [24], and the general formulas obtained
in [25] permit recovering these results. See Sect. 6. On the other hand, if
one needs the equations of motion of the source, simply one inserts the post-
Newtonian metric into the conservation law ∂ντ

μν = 0. (Note that we are
speaking of the equations of motion, which take for instance the form of Euler-
type equations with many relativistic corrections, but not of the solutions of
these equations, which are typically impossible to obtain analytically.)

From the harmonic coordinates, one can perform to all post-Minkowskian
orders [29] a coordinate transformation to some radiative coordinates such
that the metric admits a far-field expansion in powers of the inverse of the dis-
tance R (without the powers of lnR which plague the harmonic coordinates).
Considering the leading order 1/R one compares the exterior metric, which is
parametrized by the source moments (connected to the source via the match-
ing equation), to the metric defined with “radiative” multipole moments, say
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UL and VL. This gives UL and VL in terms of the source moments, notably
IL and JL, and a fortiori of the source parameters. This solves, within ap-
proximate methods, the problem of the relation between the far field and the
source. The radiative moments have been obtained with increasing precision
reaching now 3PN [69–71], as reviewed in Sect. 5.

The previous scheme is developed for a general description of matter,
however restricted to be smooth (we have in mind a general “hydrodynami-
cal” Tμν). Thus the scheme a priori excludes the presence of singularities (no
“point-particles” or black holes), but this is a serious limitation regarding the
application to compact objects like neutron stars, which can adequately be
approximated by point-masses when studying their dynamics. Fortunately,
the formalism is applicable to a singular Tμν involving Dirac measures, at
the price of a further ansatz, that the infinite self-field of point-masses can be
regularized in a certain way. By implementing consistently the regularization
we obtain the multipole moments and the radiation field of a system of two
point-masses at 2.5PN order [72,73], as well as their equations of motion at
the same order in the form of ordinary differential equations [74] (the result
agrees with previous works [16–19]); see Sect. 7.

2 Multipole Decomposition

In this section we construct the multipole expansion M(hμν) ≡ hμν
ext of the

gravitational field outside an isolated system, supposed to be at once self-
gravitating and slowly-moving. By slowly-moving we mean that the typical
current and stress densities are small with respect to the energy density, in
the sense that

max
{∣∣∣∣ T 0i

T 00

∣∣∣∣, ∣∣∣∣ T ij

T 00

∣∣∣∣1/2}
= O

(
1
c

)
, (12)

where 1/c denotes (slightly abusively) the small post-Newtonian parameter.
The point about (12) is that the ratio between the size of the source d and
a typical wavelength of the gravitational radiation is of order d/λ = O(1/c).
Thus the domain of validity of the post-Newtonian expansion covers the
source: it is given by r < b where the radius b can be chosen so that d < b =
O(λ/c).

2.1 The Matching Equation

The construction of the multipole expansion is based on several technical
assumptions, the crucial one being that of the consistency of the asymptotic
matching between the exterior and interior fields of the isolated system. In
some cases the assumptions can be proved from the properties of the exterior
field hμν

ext as obtained in [23] by means of a post-Minkowskian algorithm. How-
ever, since our assumptions are free of any reference to the post-Minkowskian
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expansion, we prefer to state them more generally, without invoking the ex-
istence of such an approximation (refer to [25] for the full detailed assump-
tions). In many cases the assumptions have been explicitly verified at some
low post-Newtonian orders [30,66,24,73].

The field h (skipping space-time indices), solution in IR4 of the relaxed
field equations and the no-incoming radiation condition, is given as the re-
tarded integral (10). We now assume that outside the isolated system, say, in
the region r > R where R is a constant radius strictly larger than d, we have
h = M(h) where M(h) denotes the multipole expansion of h, a solution of
the vacuum field equations in IR4 deprived from the spatial origin r = 0, and
admitting a spherical-harmonics expansion of a certain structure (see below).
Thus, in IR× IR3

∗ where IR3
∗ ≡ IR3 − {0},

∂νM(hμν) = 0 , (13a)
��M(hμν) = M(Λμν) . (13b)

The source term M(Λ) is obtained from inserting M(h) in place of h into
(5), i.e. M(Λ) ≡ Λ(M(h)). [Since the matter tensor has a compact support,
M(T ) = 0 so that M(τ) = c4

16πGM(Λ).] Of course, inside the source (when
r ≤ d), the true solution h differs from the vacuum solution M(h), the latter
becoming in fact singular at the origin (r = 0). We assume that the spherical-
harmonics expansion of M(h) in IR× IR3

∗ reads

M(h)(x, t) =
∑
a≤N

n̂Lra(ln r)p
LFa,p(t) + RN (x, t) . (14)

This expression is valid for any N ∈ IN . The powers of r are positive or
negative, a ∈ ZZ, and we have a ≤ N (the negative powers of r show that the
multipole expansion is singular at r = 0). For ease of notation we indicate
only the summation over a, but there are two other summations involved:
one over the powers p ∈ IN of the logarithms, and one over the order of
multipolarity l ∈ IN . The summations are considered only in the sense of
formal series, as we do not control the mathematical nature of the series.
The factor n̂L is a product of l unit vectors, nL ≡ nL ≡ ni1 ...nil , where
L ≡ i1...il is a multi-index with l indices, on which the symmetric and trace-
free (STF) projection is applied: n̂L ≡ STF[nL]. The decomposition in terms
of STF tensors n̂L(θ, ϕ) is equivalent to the decomposition in usual spherical
harmonics. The functions LFa,p(t) are smooth (C∞) functions of time, which
become constant when t ≤ −T because of our assumption (9). [Of course, the
LFa,p’s depend also on c : LFa,p(t, c).] Finally the function RN (x, t) is defined
by continuity throughout IR4. Its two essential properties are RN ∈ CN (IR4)
and RN = O(rN ) when r → 0 with fixed t. In addition RN is zero before
the time −T . Though the function RN (x, t) is given “globally” (as is the
multipole expansion), it represents a small remainder O(rN ) in the expansion
of M(h) when r → 0, which is to be identified with the “near-zone” expansion



Post-Newtonian Gravitational Radiation 235

of the field outside the source. It is convenient to introduce a special notation
for the formal near-zone expansion (valid to any order N):

M(h)(x, t) =
∑

n̂Lra(ln r)p
LFa,p(t) , (15)

where the summation is to be understood in the sense of formal series. [Note
that (14) and (15) are written for the field variable M(h), but it is easy to
check that the same type of structure holds also for the source term M(Λ).]

Our justification of the assumed structure (14) is that it has been proved to
hold for metrics in the class of Multipolar-post-Minkowskian (MPM) metrics
considered in [23], i.e. formal series hext =

∑
Gnhn which satisfy the vacuum

equations, are stationary in the past, and depend on a finite set of indepen-
dent multipole moments. More precisely, from the Theorem 4.1 in [23], the
general MPM metric hext, that we identify in this paper with M(hμν), is
such that the property (14) holds for the hn’s to any order n, with the only
difference that to any finite order n the integers a, p, l vary into some finite
ranges, namely amin(n) ≤ a ≤ N , 0 ≤ p ≤ n − 1 and 0 ≤ l ≤ lmax(n), with
amin(n) → −∞ and lmax(n) → +∞ when n → +∞. The functions LFa,p and
the remainder RN in (14) should therefore be viewed as post-Minkowskian se-
ries

∑
Gn

LFa,p,n and
∑

GnRN,n. What we have done in writing (14) and (15)
is to assume that one can legitimately consider such formal post-Minkowskian
series. Note that because the general MPM metric represents the most gen-
eral solution of the field equations outside the source (Theorem 4.2 in [23]),
it is quite appropriate to identify the general multipole expansion M(h) with
the MPM metric hext. Actually we shall justify this assumption in Sect. 5 by
recovering from M(h), step by step in the post-Minkowskian expansion, the
MPM metric hext. Because the properties are proved in [23] for any n, and
because we consider the formal post-Minkowskian sum, we see that (14)-(15),
viewed as if it were “exact”, constitutes a quite natural assumption. In par-
ticular we have assumed in (14)-(15) that the multipolar series involves an
infinite number of independent multipoles. In summary, we give to the prop-
erties (14)-(15) a scope larger than the one of MPM expansions (maybe they
could be proved for exact solutions), at the price of counting them among
our basic assumptions.

The multipole expansion M(h) is a mathematical solution of the vacuum
equations in IR× IR3

∗, but whose “multipole moments” (the functions LFa,p)
are not determined in terms of the source parameters. When the isolated
system is slowly moving in the sense of (12), there exists an overlapping
region between the domains of validity of the post-Newtonian expansion: the
“near-zone” r < b, where d < b = O(λ/c), and of the multipole expansion:
the exterior zone r > R. For this to be true it suffices to choose R, which is
restricted only to be strictly larger than d, such that d < R < b. We assume
that the field h given by (10) admits in the near-zone a formal post-Newtonian
expansion, h = h when r < b. On the other hand, recall that h = M(h)
when r > R. Matching the two asymptotic expansions h and M(h) in the
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“matching” region R < r < b means that the (formal) double series obtained
by considering the multipole expansion of (all the coefficients of) the post-
Newtonian expansion h is identical to the double series obtained by taking
the near-zone expansion of the multipole expansion. [We use the same overbar
notation for the post-Newtonian and near-zone expansions because the near-
zone expansion (r/c → 0) of the exterior multipolar field is mathematically
equivalent to the expansion when c →∞ with fixed multipole moments.] The
resulting matching equation reads

M(h) = M(h) . (16)

This equation should be true term by term, after both sides of the equation
are re-arranged as series corresponding to the same expansion parameter.
Though looking quite reasonable (if the theory makes sense), the matching
equation cannot be justified presently with full generality; however up to 2PN
order it was shown to determine a unique solution valid everywhere inside
and outside the source [30,66,24]. The matching assumption complements
the framework of MPM approximations [23], by giving physical “pith” to the
arbitrary multipole moments used in the construction of MPM metrics (see
Sect. 4).

2.2 The Field in Terms of Multipole Moments

Let us consider the relaxed vacuum Einstein equation (13b), whose source
term M(Λ), according to our assumptions, owns the structure (14) [recall
that (14) applies to M(h) as well as M(Λ)]. We obtain a particular solution of
this equation (in IR× IR3

∗) as follows. First we multiply each term composing
M(Λ) in (14) by a factor (r/r0)B , where B is a complex number and r0
a constant with the dimension of a length. For each term we can choose
the real part of B large enough so that the term becomes regular when
r → 0, and then we can apply the retarded integral (11). The resulting
B-dependent retarded integral is known to be analytically continuable for
any B ∈ IC except at integer values including in general the value of interest
B = 0. Furthermore one can show that the finite part (in short FPB=0) of this
integral, defined to be the coefficient of the zeroth power of B in the expansion
when B → 0, is a retarded solution of the corresponding wave equation. In the
case of a regular term in (14) such as the remainder RN , this solution simply
reduces to the retarded integral. Summing all these solutions, corresponding
to all the separate terms in (14), we thereby obtain as a particular solution
of (13b) the object FPB=0 ��−1

R [(r/r0)BM(Λ)]. This is basically the method
employed in [23] to solve the vacuum field equations in the post-Minkowskian
approximation.

Now all the problem is to find the homogeneous solution to be added to
the latter particular solution in order that the multipole expansion M(h)
matches with the post-Newtonian expansion h, solution within the source
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of the field equation (3) [or, rather, (10)]. Finding this homogeneous solu-
tion means finding the general consequence of the matching equation (16).
The result [24,25] is that the multipole expansion hμν satisfying the Einstein
equation (10) together with the matching equation (16) reads

M(hμν) = FPB=0 ��−1
R [(r/r0)BM(Λμν)]− 4G

c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Hμν

L (t− r/c)
}

(17)
where the first term is the previous particular solution, and where the second
term is a retarded solution of the source-free (homogeneous) wave equation,
whose “multipole moments” are given explicitly by (u ≡ t− r/c)

Hμν
L (u) = FPB=0

∫
d3x |x/r0|BxL τμν(x, u) . (18)

Here τμν denotes the post-Newtonian expansion of the stress-energy pseudo-
tensor τμν appearing in the right side of (10). In (17) and (18) we denote
L = i1 . . . il and ∂L ≡ ∂i1 . . . ∂il

, xL ≡ xi1 . . . xil
.

It is important that the multipole moments (18) are found to depend
on the post-Newtonian expansion τμν of the pseudo-tensor, and not of τμν

itself, as this is precisely where our assumption of matching to the inner
post-Newtonian field comes in. The formula is a priori valid only in the
case of a slowly-moving source; it is a priori true only after insertion of a
definite post-Newtonian expansion of the pseudo-tensor, where in particular
all the retardations have been expanded when c →∞ [the formulas (17)-(18)
assume implicitly that one can effectively construct such a post-Newtonian
expansion].

Like in the first term of (17), the moments (18) are endowed with a finite
part operation defined by complex analytic continuation in B. Notice however
that the two finite part operations in the first term of (17) and in (18) act
quite differently. In the first term of (17) the analytic continuation serves at
regularizing the singularity of the multipole expansion at the spatial origin
r = 0. Since the pseudo-tensor is smooth inside the source, there is no need in
the moments (18) to regularize the field near the origin; still the finite part is
essential because it applies to the bound of the integral at infinity (|x| → ∞).
Otherwise the integral would be (a priori) divergent at infinity, because of
the presence of the factor xL = O(rl) in the integrand, and the fact that the
pseudo-tensor τμν is non-compact supported. The two finite parts present in
the two separate terms of (17) involve the same arbitrary constant r0, but
this constant can be readily checked to cancel out between the two terms [i.e.
the differentiation of M(hμν) with respect to r0 yields zero].

The formulas (17)-(18) were first obtained (in STF form) up to the 2PN
order in [24] by performing explicitly the matching. This showed in particular
that the matching equation (16) is correct to 2PN order. Then the proof valid
to any post-Newtonian order, but at the price of assuming (16) to all orders,
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was given in Sect. 3 of [25] (see also Appendix A of [25] for an alternative
proof). The crucial step in the proof is to remark that the finite part of
the integral of M(Λ) over the whole space IR3 is identically zero by analytic
continuation:

FPB=0

∫
IR3

d3x |x/r0|BxLM(Λ)(x, u) = 0 . (19)

This follows from the fact that M(Λ) can be written as a formal series of
the type (15). Using (15) it is easy to reduce the computation of the integral
(19) to that of the elementary radial integral

∫ +∞
0 d|x||x|B+2+l+a (since the

powers of the logarithm can be obtained by repeatedly differentiating with
respect to B). The latter radial integral can be split into a “near-zone” inte-
gral, extending from zero to radius R, and a “far-zone” integral, extending
from R to infinity (actually any finite non-zero radius fits instead of R).
When the real part of B is a large enough positive number, the value of the
near-zone integral is RB+3+l+a/(B + 3 + l + a), while when the real part
of B is a large negative number, the far-zone integral reads the opposite,
−RB+3+l+a/(B + 3 + l + a). Both obtained values represent the unique an-
alytic continuations of the near-zone and far-zone integrals for any B ∈ IC
except −3 − l − a. The complete integral

∫ +∞
0 d|x||x|B+2+l+a is defined as

the sum of the analytic continuations of the near-zone and far-zone integrals,
and is therefore identically zero (∀B ∈ IC); this proves (19).

One may ask why the whole integration over IR3 contributes to the mul-
tipole moment (18) – a somewhat paradoxical fact because the integrand
is in the form of a post-Newtonian expansion, and is thus expected to be
physically valid (i.e. to give accurate results) only in the near zone. This fact
is possible thanks to the technical identity (19) which enables us to trans-
form a near-zone integration into a complete IR3-integration (refer to [25] for
details).

2.3 Equivalence with the Will–Wiseman Multipole Expansion

Recently a different expression of the multipole decomposition, with correla-
tively a different expression of the multipole moments, was obtained by Will
and Wiseman [75], extending previous work of Epstein and Wagoner [76] and
Thorne [60]. Basically, the multipole moments in [75] are defined by an inte-
gral extending over a ball of finite radius R (essentially the same R as here),
and thus do not require any regularization of the bound at infinity. By con-
trast, our multipole moments (18) involve an integration over the whole IR3,
which is allowed thanks to the analytic continuation [leading to the identity
(19)]. Let us outline the proof of the equivalence between the Will–Wiseman
formalism [75] and the present one [24,25].

Will and Wiseman [75] find, instead of (17)-(18),
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M(hμν) = ��−1
R [M(Λμν)]|R − 4G

c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Wμν

L (t− r/c)
}

. (20)

The first term is given by the retarded integral (11) acting on M(Λ), but
truntated, as indicated by the subscript R, to extend only in the “far zone”:
|x′| > R in the notation (11). Thus, the near-zone part of the retarded
integral, which contains the source, is removed, and there is no problem with
the singularity of the multipole expansion at the origin. Then, the multipole
moments WL are given by an integral extending over the “near zone” only:

Wμν
L (u) =

∫
|x|<R

d3x xL τμν(x, u) . (21)

The integral being compact-supported is well-defined. The multipole mo-
ments WL look technically more simple than ours given by (18). On the
other hand, practically speaking, the analytic continuation in (18) permits
deriving many closed-form formulas to be used in applications [72,77]. Of
course, one is free to choose any definition of the multipole moments as far
as it is used in a consistent manner.

We compute the difference between the moments HL and WL. For the
comparison we split HL into far-zone and near-zone integrals corresponding
to the radius R. Since the analytic continuation factor in HL deals only with
the bound at infinity, it can be removed from the near-zone integral, which
is then clearly seen to agree with WL. So the difference HL −WL is given by
the far-zone integral:

HL(u)−WL(u) = FPB=0

∫
|x|>R

d3x |x/r0|BxLτ(x, u) . (22)

Next we transform the integrand. Successively we write τ = M(τ) because
we are in the far zone; M(τ) = M(τ) from the matching equation (16);
and M(τ) = c4

16πGM(Λ) because T has a compact support. At this stage,
the technical identity (19) allows one to transform the far-zone integration
into a near zone integration (changing simply the overall sign in front of the
integral). So,

HL(u)−WL(u) = − c4

16πG
FPB=0

∫
|x|<R

d3x |x/r0|BxLM(Λ)(x, u) . (23)

It is straightforward to check that the right side of this equation, when
summed up over all multipolarities l, accounts exactly for the near-zone part
that was removed from the retarded integral of M(Λ) [first term in (20)], so
that the “complete” retarded integral as given by the first term in (17) is
exactly reconstituted. In conclusion the two formalisms [24,25] and [75] are
equivalent.
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3 Source Multipole Moments

Quite naturally our source multipole moments will be closely related to the
HL’s obtained in (18). However, before giving a precise definition, we need
to find the equivalent of the multipole decomposition (17)-(18) in terms of
symmetric and trace-free (STF) tensors, and we must reduce the number of
independent tensors by imposing the harmonic gauge condition (13a). This
leads to the definition of a “linearized” metric associated with the multi-
pole expansion M(h), and parametrized by six sets of STF source multipole
moments.

3.1 Multipole Expansion in Symmetric Trace-Free Form

The moments HL given by (18) are non-trace-free because xL owns all its
traces (i.e. δilil−1xL = x2xL−2, where L− 2 = i1...il−2). Instead of HL, there
are certain advantages in using STF multipole moments: indeed the STF
moments are uniquely defined, and they often yield simpler computations in
practice. It is not difficult, using STF techniques, to obtain the multipole
decomposition equivalent to (17)-(18) but expressed in terms of STF tensors.
We find

M(hμν) = FPB=0 ��−1
R [(r/r0)BM(Λμν)]− 4G

c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Fμν

L (t− r/c)
}

(24)
where the STF multipole moments are given by [25]

Fμν
L (u) = FPB=0

∫
d3x |x/r0|Bx̂L

∫ 1

−1
dz δl(z)τμν(x, u + z|x|/c) . (25)

The notation for a STF product of vectors is x̂L ≡ STF(xL) (such that x̂L

is symmetric in L and δilil−1 x̂L = 0; for instance x̂ij = xixj − 1
3δijx2). As

we see, the STF moments (25) involve an extra integration, over the variable
z, with respect to the non-STF ones (18). The weighting function associated
with the z-integration reads, for any l,

δl(z) =
(2l + 1)!!

2l+1l!
(1− z2)l ;

∫ 1

−1
dz δl(z) = 1 . (26)

In the limit of large l the weighting function tends toward the Dirac delta
measure (hence its name): liml→∞ δl = δ. Remark that since (25) is valid only
in the post-Newtonian approximation, the z-integration is to be expressed as
a post-Newtonian series. Here is the relevant formula [30]:
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∫ 1

−1
dz δl(z)τ(x, u + z|x|/c) =

∞∑
k=0

(2l + 1)!!
2kk!(2l + 2k + 1)!!

( |x|
c

∂

∂u

)2k

τ(x, u) .

(27)
In the limiting case of linearized gravity, one can neglect the first term in (24),
and the pseudo-tensor τμν in (25) can be replaced by the matter stress-energy
tensor Tμν (we have T

μν
= Tμν inside the slowly-moving source). Since

Tμν has a compact support the finite part prescription can be removed, and
we recover the known multipole decomposition corresponding to a compact-
support source (see the appendix B in [30]).

3.2 Linearized Approximation to the Exterior Field

Up to now we have solved the relaxed field equation (10) in the exterior zone,
with result the multipole decomposition (24)-(25). In this section we further
impose the harmonic gauge condition (13a), and from this we find a solution
of the linearized vacuum equation, appearing as the first approximation in a
post-Minkowskian expansion of the multipole expansion M(h).

Let us give a notation to the first term in (24):

uμν ≡ FPB=0 ��−1
R [(r/r0)BM(Λμν)] . (28)

Applying on (24) the condition ∂νM(hμν) = 0, we find that the divergence
wμ ≡ ∂νu

μν is equal to a retarded solution of the source-free wave equation,
given by

wμ =
4G
c4

∂ν

(+∞∑
l=0

(−)l

l!
∂L

{
1
r
Fμν

L (t− r/c)
})

. (29)

Now, associated to any wμ of this type, there exists some vμν which is like
wμ a retarded solution of the source-free wave equation, ��(vμν) = 0, and
furthermore whose divergence is the opposite of wμ, ∂νv

μν = −wμ. We refer
to [23,70] for the explicit formulas allowing the “algorithmic” construction
of vμν once we know wμ. For definiteness, we adopt the formulas (2.12) in
[70], which represent themselves a slight modification of the earlier formulas
(4.13) in [23] (see also the appendix B in [25]).

With vμν at our disposal we define what constitutes the linearized ap-
proximation to the exterior metric, say Ghμν

1 where we factorize out G in
front of the metric in order to emphasize its linear character:

Ghμν
1 ≡ −4G

c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Fμν

L (t− r/c)
}
− vμν . (30)
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The linearized metric satisfies the linearized vacuum equations in harmonic
gauge: ��hμν

1 = 0 since both terms in (30) satisfy the source-free wave equa-
tion, and ∂νh

μν
1 = 0 thanks to (29) and ∂νv

μν = −wμ. Using the definition
(30) one can re-write the multipole expansion of the exterior field as

M(hμν) = Ghμν
1 + uμν + vμν . (31)

Quite naturally the uμν and vμν will represent the non-linear corrections to
be added to the “linearized” metric Ghμν

1 in order to reconstruct the complete
exterior metric (see Sect. 4).

Since hμν
1 satisfies ��hμν

1 = 0 = ∂νh
μν
1 , there is a unique way to decompose

it into the sum of a “canonical” metric introduced by Thorne [60] (see also
[23]) plus a linearized gauge transformation,

hμν
1 = hμν

can1 + ∂μϕν
1 + ∂νϕμ

1 − ημν∂λϕ
λ
1 . (32)

The canonical linearized metric is defined by

h00
can1 = − 4

c2

∑
l≥0

(−)l

l!
∂L

(
1
r
IL(u)

)
, (33a)

h0i
can1 =

4
c3

∑
l≥1

(−)l

l!

{
∂L−1

(
1
r
I
(1)
iL−1(u)

)

+
l

l + 1
εiab∂aL−1

(
1
r
JbL−1(u)

)}
, (33b)

hij
can1 = − 4

c4

∑
l≥2

(−)l

l!

{
∂L−2

(
1
r
I
(2)
ijL−2(u)

)

+
2l

l + 1
∂aL−2

(
1
r
εab(iJ

(1)
j)bL−2(u)

)}
, (33c)

where the IL’s and JL’s are two sets of functions of the retarded time u =
t−r/c [the subscript (n) indicates n time derivatives], and which are STF with
respect to all their indices L = i1 . . . il (the symmetrization is denoted with
parenthesis). As for the gauge vector ϕμ

1 , it satisfies ��ϕμ
1 = 0 and depends in

a way similar to (33) on four other sets of STF functions of u, denoted WL,
XL, YL and ZL (one type of function for each component of the vector). See
[25] for the expression of ϕμ

1 = ϕμ
1 [WL, XL, YL, ZL].

3.3 Derivation of the Source Multipole Moments

The two sets of multipole moments IL and JL parametrizing the metric (33)
constitute our definitions for respectively the mass-type and current-type
multipole moments of the source. Actually, there are also the moments WL,
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XL, YL, ZL, and we refer collectively to {IL, JL,WL, XL, YL, ZL} as the set
of six source multipole moments.

With (32) it is easily seen (because ��ϕμ
1 = 0) that the gauge condition

∂νh
μν
1 = 0 imposes no condition on the source moments except the conser-

vation laws appropriate to the gravitational monopole I (having l = 0) and
dipoles Ii, Ji (l = 1): namely,

I(1) = 0 ; I
(2)
i = 0 ; J

(1)
i = 0 . (34)

The mass monopole I and current dipole Ji are thus constant, and agree
respectively with the ADM mass and total angular momentum of the isolated
system (later we shall denote the ADM mass by M ≡ I). According to (34)
the mass dipole Ii is a linear function of time, but since we assumed that the
metric is stationary in the past, Ii is in fact also constant, and equal to the
(ADM) center of mass position.

The expressions of IL and JL (as well as of the other moments WL, XL, YL,
ZL) come directly from (30) with (32)-(33) and the result of the matching,
which is personified by the formula (25). To simplify the notation we define

Σ ≡ τ00 + τ ii

c2
, (35a)

Σi ≡
τ0i

c
, (35b)

Σij ≡ τ ij , (35c)

(where τ ii ≡ δijτ
ij). The result is [25]

IL(u) = FPB=0

∫
d3x |x/r0|B

∫ 1

−1
dz

{
δlx̂LΣ − 4(2l + 1)

c2(l + 1)(2l + 3)
δl+1x̂iL∂tΣi

+
2(2l + 1)

c4(l + 1)(l + 2)(2l + 5)
δl+2x̂ijL∂2

t Σij

}
(x, u + z|x|/c) , (36a)

JL(u) = εab<il
FPB=0

∫
d3x |x/r0|B

∫ 1

−1
dz

{
δlx̂L−1>aΣb

− 2l + 1
c2(l + 2)(2l + 3)

δl+1x̂L−1>ac∂tΣbc

}
(x, u + z|x|/c) , (36b)

(<> refers to the STF projection). In a sense these expressions are exact,
since they are formally valid up to any post-Newtonian order. [See (68)-(69)
below for explicit formulas at 2PN.]

By replacing τμν in (36) by the compact-support matter tensor Tμν we
recover the expressions of the multipole moments worked out in linearized
gravity by Damour and Iyer [78] (see also [79]). On the other hand the for-
mulas (36) contain the results obtained by explicit implementation (“order
by order”) of the matching up to the 2PN order [24].
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4 Post-Minkowskian Approximation

In linearized gravity, the source multipole moments represent also the mo-
ments which are “measured” at infinity, using an array of detectors sur-
rounding the source. However, in the non-linear theory, the gravitational
source Λμν cannot be neglected and the first term in (24) plays a crucial
role, notably it implies that the measured multipole moments at infinity dif-
fer from the source moments. Thus, we must now supplement the formulas
of the source multipole moments (36) by the study of the “non-linear” term
uμν ≡ FPB=0��−1

R [(r/r0)BM(Λμν)] in (24). For this purpose we develop fol-
lowing [23] a post-Minkowskian approximation for the exterior vacuum met-
ric.

4.1 Multipolar Post-Minkowskian Iteration of the Exterior Field

The work started already with the formulas (31)-(33), where we expressed
the exterior multipolar metric hμν

ext ≡M(hμν) as the sum of the “linearized”
metric Ghμν

1 and the “non-linear” corrections uμν , given by (28), and vμν ,
algorithmically constructed from wμ = ∂νu

μν [see (29)]. The linearized metric
is a functional of the source multipole moments: h1 = h1[I, J,W,X, Y, Z]. We
regard G as the book-keeping parameter for the post-Minkowskian series,
and consider that Gh1 is purely of first order in G, and thus that h1 itself is
purely of zeroth order. Of course we know from the previous section that this
is untrue, because the source multipole moments depend on G; supposing
h1 = O(G0) is simply a convention allowing the systematic implementation
of the post-Minkowskian iteration.

Here we check that the non-linear corrections uμν and vμν in (31) gen-
erate the whole post-Minkowskian algorithm of [23]. The detail demanding
attention is how the post-Minkowskian expansions of uμν and vμν are related
to a splitting of the gravitational source Λμν into successive non-linear terms.
Let us pose, with obvious notation,

Λμν = Nμν [h, h] + Mμν [h, h, h] + O(h4) , (37)

where, from the exact formula (5), the quadratic-order piece reads (all indices
being lowered with the Minkowski metric, and h denoting ηρσhρσ):

Nμν [h, h] = − hρσ∂2
ρσh

μν +
1
2
∂μhρσ∂

νhρσ − 1
4
∂μh∂νh

− ∂μhρσ∂
ρhνσ − ∂νhρσ∂

ρhμσ + ∂σh
μρ(∂σhν

ρ + ∂ρh
νσ)

+ ημν

[
−1

4
∂λhρσ∂

λhρσ +
1
8
∂ρh∂

ρh +
1
2
∂ρhσλ∂

σhρλ

]
, (38)

and where the cubic-order piece M [h, h, h] and all higher-order terms can be
obtained in a straightforward way.
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First, reasoning ad absurdio, we prove (see [25] for details) that both u
and v indeed represent non-linear corrections to the linearized metric since
they start at order G2: u = G2u2 + O(G3) and v = G2v2 + O(G3). Next we
obtain explicitly u2 by substituting the linearized metric h1 into (38) and
applying the finite part of the retarded integral, i.e.

uμν
2 = FPB=0��−1

R

{
(r/r0)BNμν [h1, h1]

}
. (39)

In this way we have a particular solution of the wave equation in IR × IR3
∗,

��u2 = N [h1, h1]. From u2 one deduces v2 by the same “algorithmic” equa-
tions as used when deducing v from u [see after (29)]. Then ��v2 = 0 and the
sum u2 + v2 is divergenceless, so we can solve the quadratic-order vacuum
equations in harmonic coordinates by posing

hμν
2 = uμν

2 + vμν
2 . (40)

With this definition it is clear that the multipole expansion (31) reads to
quadratic order:

M(hμν) = Ghμν
1 + G2hμν

2 + O(G3) . (41)

Continuing in this fashion to the next order we find successively

uμν
3 = FPB=0��−1

R

{
(r/r0)B

(
Mμν [h1, h1, h1] + Nμν [h1, h2] + Nμν [h2, h1]

)}
;

(42a)
hμν

3 = uμν
3 + vμν

3 ; (42b)

M(hμν) = Ghμν
1 + G2hμν

2 + G3hμν
3 + O(G4) . (42c)

This process continues ad infinitum. The latter post-Minkowskian algorithm
is exactly the one proposed in [23] (see also Sect. 2 of [70]). That is, starting
from h1[I, J,W,X, Y, Z] given by (32)-(33), one generates the infinite post-
Minkowskian (MPM) series of [23], solving the vacuum (harmonic-coordinate)
Einstein equations in IR × IR3

∗, and this formal series happens to be equal,
term by term in G, to the general multipole decomposition of hμν given by
(24). For any n, we have hμν

n = uμν
n + vμν

n , and

M(hμν) =
+∞∑
n=1

Gnhμν
n . (43)

This result is perfectly consistent with the fact that the MPM algorithm
generates the most general solution of the field equations in IR × IR3

∗. Fur-
thermore, the latter post-Minkowskian approximation is known [26] to be
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reliable (existence of a one-parameter family of exact solutions whose Taylor
expansion when G → 0 reproduces the approximation) – an interesting result
which indicates that the multipole decomposition M(h) given by (24)-(25)
might be proved within a context of exact solutions.

Recall that the source multipole moments IL, JL, WL, XL, YL, ZL enter-
ing the linearized metric h1 at the basis of the post-Minkowskian algorithm
are given by formulas like (36). Thus, in the present formalism, the source
moments, including formally all post-Newtonian corrections [and all possible
powers of G] as contained in (36), serve as “seeds” for the post-Minkowskian
iteration of the exterior field, which as it stands leads to all possible non-
linear interactions between the moments. As we can imagine, rapidly the
formalism becomes extremely complicated when going to higher and higher
post-Minkowskian and/or post-Newtonian approximations. Most likely the
complexity is not due to the formalism but reflects the complexity of the
field equations. It is probably impossible to find a different formalism in
which things would be much simpler (except if one restricts to a particular
type of source).

4.2 The “Canonical” Multipole Moments

The previous post-Minkowskian algorithm started with h1, a functional of
six types of source multipole moments, IL and JL entering the “canonical”
linearized metric hcan1 given by (33), and WL, XL, YL, ZL parametrizing the
gauge vector ϕ1 in (32). All these moments deserve their name of source mo-
ments, but clearly the moments WL, XL, YL and ZL do not play a physical
role at the level of the linearized approximation, as they simply parametrize a
linear gauge transformation. But because the theory is covariant with respect
to (non-linear) diffeomorphisms and not merely to linear gauge transforma-
tions, these moments do contribute to physical quantities at the non-linear
level.

In practice, the presence of the moments WL, XL, YL, ZL complicates the
post-Minkowskian iteration. Fortunately one can take advantage of the fact
(proved in [23]) that it is always possible to parametrize the vacuum metric by
means of two and only two types of multipole moments ML and SL (different
from IL and JL). The metric is then obtained by the same post-Minkowskian
algorithm as in (39)-(43), but starting with the “canonical” linearized metric
hcan1[M,S] instead of h1[I, J,W,X, Y, Z]. The resulting non-linear metric
hcan is isometric to our exterior metric hext ≡ M(h), provided that the
moments ML and SL are given in terms of the source moments IL, JL, . . . , ZL

by some specific relations

ML = ML[I, J,W,X, Y, Z] , (44a)
SL = SL[I, J,W,X, Y, Z] . (44b)
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The two coordinate systems in which hcan and hext are defined satisfy the
harmonic gauge condition in the exterior zone, but (probably) only the one
associated with hext meshes with the harmonic coordinates in the interior
zone. With the notation (32) the coordinate change reads δxμ = Gϕμ

1+ non-
linear corrections. We shall refer to the moments ML and SL as the mass-
type and current-type canonical multipole moments. Of course, since at the
linearized approximation the only “physical” moments are IL and JL, we
have

ML = IL + O(G) , (45a)
SL = JL + O(G) , (45b)

where O(G) denotes the post-Minkowskian corrections. Furthermore, it can
be shown [73] that in terms of a post-Newtonian expansion the difference
between both types of moments is very small: 2.5PN order, i.e.

ML = IL + O

(
1
c5

)
(46)

[note that M = MADM = I]. Thus, from (46), the canonical moments are
only “slightly” different from the source moments. Their usefulness is merely
practical – in general they are used in place of the source moments to simplify
a computation.

4.3 Retarded Integral of a Multipolar Extended Source

The previous post-Minkowskian algorithm has only theoretical interest unless
we supply it with some explicit formulas for the computation of the coeffi-
cients hn. Happily for us pragmatists, such formulas exist, and can be found
in a rather elegant way thanks to the process of analytic continuation. Ba-
sically we need the retarded integral of an extended (non-compact-support)
source with a definite multipolarity l. Here we present three exemplifying
formulas; see the appendices A in [70] and [71] for more discussion.

Very often we meet a wave equation whose source term is of the type
n̂LF (t−r/c)/rk, where n̂L has multipolarity l and F denotes a certain prod-
uct of multipole moments. [Clearly, the near-zone expansion of such a term is
of the form (15).] When the power k is such that 3 ≤ k ≤ l+2 (this excludes
the scalar case l = 0), we obtain the solution of the wave equation as [23,68]

FPB=0��−1
R

[
(r/r0)B n̂L

rk
F (t− r/c)

]
= − (k − 3)!(l + 2− k)!

(l + k − 2)!
n̂L

×
k−3∑
j=0

2k−3−j (l + j)!
j!(l − j)!

F (k−3−j)(t− r/c)
ck−3−j rj+1 . (47)
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As we see the (finite part of the) retarded integral depends in this case on
the values of the extended source at the same retarded time t − r/c (for
simplicity we use the same notation for the source and field points). But it
is well known (see e.g. [80,81]) that this feature is exceptional; in most cases
the retarded integral depends on the whole integrated past of the source. A
chief example of such a “hereditary” character is the case with k = 2 in the
previous example, for which we find [68,69]

��−1
R

[
n̂L

r2 F (t− r/c)
]

= − n̂L

r

∫ ct−r

−∞
dsF (s/c)Ql

(
ct− s

r

)
(48)

where Ql denotes the Legendre function of the second kind, related to the
usual Legendre polynomial Pl by the formula

Ql(x) =
1
2
Pl(x)ln

(
x + 1
x− 1

)
−

l∑
j=1

1
j
Pl−j(x)Pj−1(x) . (49)

Since the retarded integral (48) is in fact convergent when r → 0, we have
removed the factor (r/r0)B and finite part prescription. When the source
term itself is given by a “hereditary” expression such as the right side of
(48), we get a more complicated but still manageable formula, for instance
[71]

��−1
R

[
n̂L

r2

∫ ct−r

−∞
dsF (s/c)Qp

(
ct− s

r

)]
=

cn̂L

r

∫ ct−r

−∞
dsF (−1)(s/c)Rlp

(
ct− s

r

)
(50)

where F (−1) denotes that anti-derivative of F which is zero in the past [from
(9) we have restricted F to be zero in the past], and where

Rlp(x) = Ql(x)
∫ x

1
dy Qp(y)

dPl

dy
(y) + Pl(x)

∫ +∞

x

dy Qp(y)
dQl

dy
(y) . (51)

Like in (48) we do not need a finite part operation. The function Rlp is
well-defined thanks to the behaviour of the Legendre function at infinity:
Ql(x) ∼ 1/xl+1 when x →∞.

The formulas (48)-(51) are needed to investigate the so-called tails of
gravitational waves appearing at quadratic non-linear order, and even the
tails generated by the tails themselves (“tails of tails”) which arise at cubic
order [69,71]. (These formulas do not show a dependence on the constant r0,
but other formulas do.)

5 Radiative Multipole Moments

In Sect. 2 we introduced the definition of a set of multipole moments
{IL, JL,WL, XL, YL, ZL} for the isolated source, and in Sect. 3 we showed
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that the exterior field, and in particular the asymptotic field therein, is
actually a complicated non-linear functional of the latter moments. There-
fore, to define some source multipole moments is not sufficient by itself;
this must be completed by a study of the relation between the adopted
definition and some convenient far-field observables. The same is true of
other definitions of source moments in different formalisms, such as in
the Dixon local description of extended bodies [82–84], which should be
completed by a connection to the far-zone gravitational field, for instance
along the line proposed by [85,86] in the case of the Dixon moments. In the
present formalism, the connection rests on the relation between the so-called
radiative multipole moments, denoted UL and VL, and the source moments
IL, JL,. . ., ZL [in fact, for simplicity’s sake, we prefer using the two moments
ML and SL instead of the more basic six source moments].

5.1 Definition and General Structure

The radiative moments UL (mass-type) and VL (current-type) are the co-
efficients of the multipolar decomposition of the leading 1/R part of the
transverse-tracefree (TT) projection of the radiation field in radiative coor-
dinates (T,X) (with R = |X| the radial distance to the source). Radiative
coordinates are such that the metric coefficients admit an expansion when
R → ∞ in powers of 1/R (no logarithms of R). In radiative coordinates the
retarded time T −R/c is light-like, or becomes asymptotically light-like when
R →∞. By definition,

hTT
ij (X, T ) =

4G
c2R

Pijab(N)
∑
l≥2

1
cll!

{
NL−2UabL−2

− 2l
c(l + 1)

NcL−2εcd(aVb)dL−2

}
+ O

(
1
R2

)
, (52)

where Ni = Xi/R, NL−2 = Ni1 . . . Nil−2 , NcL−2 = NcNL−2, and the TT al-
gebraic projector reads Pijab = (δia−NiNa)(δjb−NjNb)− 1

2 (δij−NiNj)(δab−
NaNb). The radiative moments UL and VL depend on T − R/c ; from (52)
they are defined ∀ l ≥ 2. The radiative-coordinate retarded time differs from
the corresponding harmonic-coordinate time by the well-known logarithmic
deviation of light cones,

T − R

c
= t− r

c
− 2GM

c3
ln

(
r

r0

)
+ O(G2) , (53)

where we have introduced in the logarithm the same constant r0 as in (39)
(this corresponds simply to a choice of the origin of time in the far zone).

Now from the post-Minkowskian algorithm of Sect. 3, it is clear that the
radiative moments UL and VL can be obtained to any post-Minkowskian order
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in principle, in the form of a non-linear series in the source or equivalently the
canonical multipole moments ML and SL. The practical detail (worked out
in [29]) is to determine the transformation between harmonic and radiative
coordinates, generalizing (53) to any post-Minkowskian order. The structure
of e.g. the mass-type radiative moment is

UL = M
(l)
L +

+∞∑
n=2

Gn−1

c3(n−1)+2k
XnL . (54)

The first term comes from the fact that the radiative moment reduces at the
linearized approximation to the (lth time derivative of the) source or canoni-
cal moment. The second term represents the series of non-linear corrections,
each of them is given by a certain XnL which is a n-linear functional of deriva-
tives of multipole moments ML or SL. Furthermore we know from e.g. (48)
and (50) that each new non-linear iteration (which always involves a retarded
integral) brings a priori a new “hereditary” integration with respect to the
previous approximation. So we expect that XnL is of the form (U ≡ T −R/c)

XnL(U) =
∑ ∫ U

−∞
du1 . . .

∫ U

−∞
dunZn(U, u1, . . . , un)M (a1)

L1
(u1) . . . S

(an)
Ln

(un)

(55)
where Zn denotes a certain kernel depending on time variables U, u1, . . . , un,
and where the sum refers to all possibilities of coupling together the n mo-
ments. [See (56) below for examples of kernels Z2 and Z3.] A useful infor-
mation is obtained from imposing that Zn be dimensionless; this yields the
powers of G and 1/c in front of each non-linear term in (54), where k is the
number of contractions among the indices present on the n moments (the
current moments carrying their associated Levi-Civita symbol).

As an example of application of (54) let us suppose that one is interested
in the 3PN or 1/c6 approximation. From (54) we have 3(n−1)+2k = 6, and
we deduce that the only possibility is n = 3 (cubic non-linearity) and k = 0
(no contractions between the moments). From this we infer immediately that
the only possible multipole interaction at that order is between two mass
monopoles and a multipole, i.e. M ×M ×ML. This corresponds to the “tails
of tails” computed explicitly in (56) below.

5.2 The Radiative Quadrupole Moment to 3PN Order

To implement the formula (54) a tedious computation is to be done, following
in details the post-Minkowskian algorithm of Sect. 4 augmented by explicit
formulas such as (47)-(51), and changing the coordinates from harmonic to
radiative according to the prescription in [29]. Here we present the result of
the computation of the mass-type radiative quadrupole (l = 2) up to the
3PN order:
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Uij(U) = M
(2)
ij (U) + 2

GM

c3

∫ +∞

0
dτM

(4)
ij (U − τ)

[
ln

(
cτ

2r0

)
+

11
12

]
+

G

c5

{
−2

7

∫ +∞

0
dτ

[
M

(3)
a<iM

(3)
j>a

]
(U − τ)− 2

7
M

(3)
a<iM

(2)
j>a

−5
7
M

(4)
a<iM

(1)
j>a +

1
7
M

(5)
a<iMj>a +

1
3
εab<iM

(4)
j>aSb

}
+2

(
GM

c3

)2∫ +∞

0
dτM

(5)
ij (U − τ)

[
ln2

(
cτ

2r0

)
+

57
70

ln
(

cτ

2r0

)
+

124627
44100

]
+O

(
1
c7

)
. (56)

Recall that in this formula the moment Mij is the canonical moment which
agrees with the source moment Iij up to a 2.5PN term [see (46)], and that the
source moment Iij itself is given in terms of the pseudo-tensor of the source
by (36a). See also the formulas (68)-(69) below for a more explicit expression
of the source moment at the 2PN order [of course, to be consistent, one should
use (56) conjointly with 3PN expressions of the source moments].

The “Newtonian” term in (56) corresponds to the quadrupole formalism.
Next, there is a quadratic non-linear correction with multipole interaction
M ×Mij representing the dominant effect of tails (scattering of linear waves
off the space-time curvature generated by the mass M). This correction, com-
puted in [69], is of order 1/c3 or 1.5PN and has the form of a hereditary inte-
gral with logarithmic kernel. The constant 11/12 depends on the coordinate
system chosen to cover the source, here the harmonic coordinates; for in-
stance the constant would be 17/12 in Schwarzschild-like coordinates [87,88].
The next correction, of order 1/c5 or 2.5PN, is constituted by quadratic in-
teractions between two mass quadrupoles, and between a mass quadrupole
and a constant current dipole [70]. This term contains a hereditary integral,
of a type different from the tail integral, which is due to the gravitational ra-
diation generated by the stress-energy distribution of linear waves [89–91,69].
Sometimes this integral is referred to as the non-linear memory integral be-
cause it corresponds to the contribution of gravitons in the so-called linear
memory effect [92]. The non-linear memory integral can easily be found by
using the effective stress-energy tensor of gravitational waves in place of the
right side of (3); it follows also from rigorous studies of the field at future
null infinity [93,94]. Finally, at 3PN order in (56) appears the dominant cu-
bic non-linear correction, corresponding to the interaction M ×M ×Mij and
associated with the tails of tails of gravitational waves [71].

5.3 Tail Contributions in the Total Energy Flux

Observable quantities at infinity are expressible in terms of the radiative mass
and current multipole moments. For instance the total gravitational-wave
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power emitted in all spatial directions (total gravitational flux or “luminosity”
L) is given by the positive-definite multipolar series

L =
+∞∑
l=2

G

c2l+1

{
(l + 1)(l + 2)

l(l − 1)l!(2l + 1)!!
U

(1)
L U

(1)
L

+
4l(l + 2)

c2(l − 1)(l + 1)!(2l + 1)!!
V

(1)
L V

(1)
L

}
. (57)

In the case of inspiralling compact binaries (a most prominent source of grav-
itational waves) the rate of inspiral is fixed by the flux L, which is therefore
a crucial quantity to predict. Excitingly enough, we know that L should be
predicted to 3PN order for detection and analysis of inspiralling binaries in
future experiments [95,96].

To 3PN order we can use the relation (56) giving the 3PN radiative
quadrupole moment. Here we concentrate our attention on tails and tails of
tails. The dominant tail contribution at 1.5PN order yields correspondingly
a contribution in the total flux (with U = T −R/c):

Ltail =
4G2M

5c8
I
(3)
ij (U)

∫ +∞

0
dτI

(5)
ij (U − τ)

[
ln

(
cτ

2r0

)
+

11
12

]
. (58)

Since we are interested in the dominant tail we have replaced using (46)
the canonical mass quadrupole by the source quadrupole. Similarly there are
some tail contributions due to the mass octupole, current quadrupole and all
higher-order multipoles, but these are correlatively of higher post-Newtonian
order [see the factors 1/c in (57)]. It has been shown [68] that the work done
by the dominant “hereditary” contribution in the radiation reaction force
within the source – which arises at 4PN order in the equations of motion –
agrees exactly with (58).

Next, because L is made of squares of (derivatives of) radiative moments,
it contains a term with the square of the tail integral at 1.5PN. This term
arises at the 3PN relative order and reads

L(tail)2 =
4G3M2

5c11

(∫ +∞

0
dτI

(5)
ij (U − τ)

[
ln

(
cτ

2r0

)
+

11
12

])2

. (59)

Finally, there is also the direct 3PN contribution of tails of tails in (56):

Ltail(tail) =
4G3M2

5c11
I
(3)
ij (U)

∫ +∞

0
dτI

(6)
ij (U − τ)

×
[
ln2

(
cτ

2r0

)
+

57
70

ln
(

cτ

2r0

)
+

124627
44100

]
. (60)



Post-Newtonian Gravitational Radiation 253

By a control of all the hereditary integrals in L up to 3PN we have checked
[71] that the terms (59)-(60) do exist. The two contributions (59) and (60)
appear somewhat on the same footing – of course both should be taken into
account in practical computations. Note that in a physical situation where the
emission of radiation stops after a certain date, in the sense that the source
multipole moments become constant after this date (assuming a consistent
matter model which would do this at a given post-Newtonian order), the
only contribution to L which survives after the end of emission is the 3PN
tail-square contribution (59).

6 Post-Newtonian Approximation

In Sects. 2 and 3 we have reasoned upon the formal post-Newtonian expan-
sion h

μν
of the near-zone field to obtain the source multipole moments as

functionals of the post-Newtonian pseudo-tensor τμν . We have also consid-
ered in Sects. 4 and 5 the formal expansion c → ∞ of the radiation field
when holding the multipole moments fixed. Clearly missing in this scheme is
an explicit algorithm for the computation of h

μν
in the near zone. No such

algorithm (say, in the spirit of the post-Minkowskian algorithm in Sect. 4) is
known presently, but a lot is known on the first few post-Newtonian iterations
[20,21,44–58,30,24].

The main difficulty in setting up a post-Newtonian algorithm is the ap-
pearance at some post-Newtonian order of divergent Poisson-like integrals.
This comes from the fact that the post-Newtonian expansion is actually a
near-zone expansion [44], which is valid only in the region where r = O(λ/c),
and that such an expansion blows up when taking formally the limit r → +∞.
For instance, Rendall [13] has shown that the post-Newtonian solution can-
not be asymptotically flat starting at the 2PN or 3PN level, depending on the
gauge. This is clear from the structure of the exterior near-zone expansion
(15), which involves many positive powers of the radial distance r. Thus, one
is not allowed in general to consider the limit r → +∞. In consequence, using
the Poisson integral for solving a Poisson equation with non-compact-support
source at a given post-Newtonian order is a priori meaningless. Indeed the
Poisson integral not only extends over the near-zone but also over the regions
at infinity. This means that the Poisson integral does not constitute the cor-
rect solution of the Poisson equation in this context. However, to the lowest
post-Newtonian orders it works; for instance it was shown by Kerlick [50,51]
and Caporali [52] that the post-Newtonian iteration (including the sugges-
tion by Ehlers [48,49] of an improvement with respect to previous work [55])
is well-defined up to the 2.5PN order where radiation reaction terms appear,
but that some divergent integrals show up at the 3PN order.

Another difficulty is that the post-Newtonian approximation is in a sense
not self-supporting, because it necessitates information coming from outside
its own domain of validity. Of course we have in mind the boundary condi-
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tions at infinity which determine the radiation reaction in the source’s local
equations of motion. Again, to the lowest post-Newtonian orders one can
circumvent this difficulty by considering retarded integrals that are formally
expanded when c → ∞ as series of “instantaneous” Poisson-like integrals
[55]. However, this procedure becomes incorrect at the 4PN order, not to
mention the problem of divergencies, because the near-zone field (as well as
the source’s dynamics) ceases to be given by an instantaneous functional of
the source parameters, due to the appearance of “tail-transported” hereditary
integrals modifying the lowest-order radiation reaction damping [68,32].

Let us advocate here that the cure of the latter difficulty (and perhaps
of all difficulties) is the matching equation (16). Indeed suppose that one
knows a particular solution of the Poisson equation at some post-Newtonian
order. This solution might be in the form of some “finite part” of a Pois-
son integral. The correct post-Newtonian solution will be the sum of this
particular solution and of a homogeneous solution satisfying the Laplace
equation, namely a harmonic solution, regular at the origin, which can al-
ways be written in the form

∑
ALx̂L, for some unknown constant tensors

AL. The homogeneous solution is associated with radiation reaction effects.
Now the matching equation states that the multipole expansion of the post-
Newtonian solution agrees with the near-zone expansion of the exterior field
(which has been computed beforehand in Sect. 4). The multipole expansion
of the known particular solution can be obtained by a standard method,
and the multipole expansion of the homogeneous solution is simply itself, i.e.
M(

∑
ALx̂L) =

∑
ALx̂L. Therefore, we see that the matching equation de-

termines in principle the homogeneous solution (i.e. all the unknown tensors
AL), and since the exterior field satisfies relevant boundary conditions at in-
finity, the AL’s should correspond to the radiation reaction on a truly isolated
system. See [67,68,31,32] for implementation of this method to determine the
radiation reaction force to 4PN order (1.5PN relative order).

6.1 The Inner Metric to 2.5PN Order

Going to high post-Newtonian orders can become prohibitive because of the
rapid proliferation of terms. Typically any allowed term (compatible dimen-
sion, correct index structure) does appear with a definite non-zero coefficient
in front. However, high post-Newtonian orders can be manageable if one
chooses some appropriate matter variables, and if one avoids expanding sys-
tematically the retardations due to the speed of propagation of gravity. Often
it is sufficient, and clearer, to present a result in terms of matter variables still
containing some c’s, and perhaps also in terms of some convenient retarded
potentials (being clear that any retardation going to an order higher than
the prescribed post-Newtonian order of the calculation is irrelevant). See for
instance (65) and (68)-(69) below. Anyway, only in a final stage, when a re-
sult to the prescribed order is in hands, should we introduce the more basic
matter variables (e.g. the coordinate mass density) and perform all necessary
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retardations. Then of course one does not escape to a profusion of terms, but
at least we have been able to carry the post-Newtonian iteration using some
reasonably simple expressions.

The matter variables are chosen [30,24] in a way consistent with our earlier
definitions (35), i.e.

σ ≡ T 00 + T ii

c2
; (61a)

σi ≡
T 0i

c
; (61b)

σij ≡ T ij . (61c)

To 2.5PN order one defines some retarded potentials V , Vi, Ŵij , X̂ and R̂i,
with V and Vi looking like some retarded versions of the Newtonian and
gravitomagnetic potentials, and Ŵij being associated with the matter and
gravitational-field stresses:

V ≡ ��−1
R {−4πGσ} , (62a)

Vi ≡ ��−1
R {−4πGσi} , (62b)

Ŵij ≡ ��−1
R {−4πG(σij − δijσkk)− ∂iV ∂jV } , (62c)

R̂i ≡ ��−1
R

{
−4πG(V σi − Viσ)− 2∂kV ∂iVk −

3
2
∂tV ∂iV

}
, (62d)

X̂ ≡ ��−1
R

{
−4πGV σii + 2Vi∂t∂iV + V ∂2

t V

+
3
2
(∂tV )2 − 2∂iVj∂jVi + Ŵij∂

2
ijV

}
, (62e)

where ��−1
R denotes the retarded integral (11). All these potentials but V and

Vi have a spatially non-compact support. The highest non-linearity entering
them is cubic; it appears in the last term of X̂.

Based on the latter potentials one can show [24,74] that the inner metric
to order 2.5PN (in harmonic coordinates, ∂ν(

√−ggμν) = 0) takes the form

g00 = −1 +
2
c2

V − 2
c4

V 2 +
8
c6

[
X̂ + ViVi +

V 3

6

]
+ O

(
1
c8

)
, (63a)

g0i = − 4
c3

Vi −
8
c5

R̂i + O

(
1
c7

)
, (63b)

gij = δij

(
1 +

2
c2

V +
2
c4

V 2
)

+
4
c4

Ŵij + O

(
1
c6

)
, (63c)

(writing gμν would be more consistent with the notation of Sect. 2). With
this form, we believe, the computational problems encountered in applica-
tions are conveniently divided into the specific problems associated with the
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computation of the various potentials (62), which constitute in this approach
some appropriate computational “blocks” (having of course no physical sig-
nification separately). By expanding all powers of 1/c present into the mat-
ter densities (61) and into the retardations of the potentials (62), we find
that the metric (63) becomes extremely complicated, as it really is (see e.g.
[46,47,50,51]).

Because of our use of retarded potentials, the metric (63) involves explic-
itly only even post-Newtonian terms (using the post-Newtonian terminology
that even terms correspond to even powers of 1/c in the equations of mo-
tion). We have checked [24] that the odd post-Newtonian terms (responsible
for radiation reaction), contained in (63) via the expansion of retardations,
match, in the sense of the equation (16), to the exterior metric satisfying the
no-incoming radiation condition (9).

The harmonic gauge condition implies some differential equations to be
satisfied by the previous potentials. To 2.5PN order we find

∂t

{
V +

1
c2

[
1
2
Ŵii + 2V 2

]}
+ ∂i

{
Vi +

2
c2

[
R̂i + V Vi

]}
= O

(
1
c4

)
, (64a)

∂tVi + ∂j

{
Ŵij −

1
2
δijŴkk

}
= O

(
1
c2

)
, (64b)

where Ŵii ≡ δijŴij . These equations are in turn equivalent to the equation
of continuity and the equation of motion for the matter system,

∂tσ + ∂iσi =
1
c2

(∂tσii − σ∂tV ) + O

(
1
c4

)
, (65a)

∂tσi + ∂jσij = σ∂iV + O

(
1
c2

)
. (65b)

Note that the precision is 1PN for the equation of continuity but only New-
tonian for the equation of motion.

6.2 The Mass-Type Source Moment to 2.5PN Order

From the 2.5PN metric (63) we obtain the pseudo-tensor τ and the auxiliary
quantities (35), that we replace into the formulas (36) to obtain the 2.5PN
source multipole moments. Recall that the z-integration in the moments is
to be carried out using the formula (27). Let us first see how this works at
the 1PN order.

We need Σ to 1PN order and Σi to Newtonian order. The latter quantity
reduces to the matter part, Σi = σi +O(1/c2), and the former one reads after
a simple transformation
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Σ = σ − 1
2πGc2

Δ(V 2) + O

(
1
c4

)
. (66)

The substitution into the moments IL given by (36a) leads to

IL = FPB=0

∫
d3x |x/r0|B

{
x̂Lσ − x̂L

2πGc2
Δ(V 2)

+
|x|2x̂L

2c2(2l + 3)
∂2

t σ − 4(2l + 1)x̂iL

c2(l + 1)(2l + 3)
∂tσi

}
+ O

(
1
c4

)
. (67)

The integrand is non-compact-supported because of the contribution of the
second term, and accordingly we keep the regularization factor |x/r0|B and
finite part operation. But let us operate by parts the second term, using the
fact that |x|Bx̂LΔ(V 2)−Δ(|x|Bx̂L)V 2 = ∂i{|x|Bx̂L∂i(V 2)− ∂i(|x|Bx̂L)V 2}
is a pure divergence. When the real part of B is a large negative number,
we see thanks to the Gauss theorem that the latter divergence will not
contribute to the moment, therefore by the unicity of the analytic contin-
uation it will always yield zero contribution. Thus, using Δx̂L = 0, we
can replace |x|Bx̂LΔ(V 2) in the second term of (67) by Δ(|x|Bx̂L)V 2 =
B(B + l + 1)|x|B−2x̂LV 2, and because of the explicit factor B we see that
the second term can be non-zero only in the case where the factor B multi-
plies an integral owning a simple pole ∼ 1/B due to the integration bound
|x| → ∞. Expressing V 2 (to Newtonian order) in terms of source points z1
and z2, we obtain the integral

∫
d3x |x|B−2x̂L|x − z1|−1|x − z2|−1. When

|x| → ∞ each |x−z1,2|−1 can be expanded as a series of n̂L1,2 |x|−l1,2−1; then
performing the angular integration shows that the sum of “multipolarities”
l + l1 + l2 is necessarily an even integer. When this is realized the remaining
radial integral reads

∫
d|x| |x|B+l−l1−l2−2 which develops a pole only when

l − l1 − l2 − 2 = −1. But that is incompatible with the previous finding.
Thus the second term in (67) is identically zero, and we end up simply with
a compact-support expression on which we no longer need to implement the
finite part,

IL =
∫

d3x
{
x̂Lσ+

|x|2x̂L

2c2(2l + 3)
∂2

t σ−
4(2l + 1)x̂iL

c2(l + 1)(2l + 3)
∂tσi

}
+O

(
1
c4

)
. (68)

This expression was first obtained in [30] using a different method valid at
1PN order. Here we have recovered the same expression from the formula
(36a) valid to any post-Newtonian order [24,25].

Only starting at the 2PN order does the mass multipole moment have a
non-compact support (so the finite part becomes crucial at this order). By a
detailed computation in [24] we arrive at the following 2PN (or rather 2.5PN)
expression:
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IL(t) = FPB=0

∫
d3x |x/r0|B

{
x̂L

[
σ +

4
c4

σiiV

]
+

|x|2x̂L

2c2(2$ + 3)
∂2

t σ

+
|x|4x̂L

8c4(2$ + 3)(2$ + 5)
∂4

t σ − 2(2$ + 1)|x|2x̂iL

c4($ + 1)(2$ + 3)(2$ + 5)
∂3

t σi

+
2(2$ + 1)x̂ijL

c4($ + 1)($ + 2)(2$ + 5)
∂2

t

[
σij +

1
4πG

∂iV ∂jV

]
+

x̂L

πGc4

[
−Ŵij∂

2
ijV − 2Vi∂t∂iV + 2∂iVj∂jVi −

3
2
(∂tV )2 − V ∂2

t V

]
− 4(2$ + 1)x̂iL

c2($ + 1)(2$ + 3)
∂t

[(
1 +

4V
c2

)
σi

+
1

πGc2

(
∂kV [∂iVk − ∂kVi] +

3
4
∂tV ∂iV

)]}
+ O

(
1
c6

)
. (69)

Recall that the canonical moment ML differs from the source moment IL at
precisely the 2.5PN order [see (46)].

7 Point-Particles

So far the post-Newtonian formalism has been developed for smooth (i.e. C∞)
matter distributions. As such, the source multipole moments (36) become ill-
defined in the presence of singularities. We now argue that the formalism is
in fact also applicable to singular sources (notably point-particles described
by Dirac measures) provided that we add to our other basic assumptions a
certain method for removing the infinite self-field of point-masses. Our main
motivation is the inspiralling compact binary – a system of two compact
objects (neutron stars or black holes) which can be described with great
precision by two point-particles moving on a circular orbit, and whose orbital
phase evolution should be computed prior to gravitational-wave detection
with relative 3PN precision [95,96].

For this application we restrict ourselves to two point-masses m1 and
m2 (constant Schwarzschild masses). The trajectories are y1(t) and y2(t)
and the coordinate velocities v1,2 = dy1,2/dt; we pose vμ

1,2 = (c,v1,2). The
symbol 1 ↔ 2 means the same term but with the labels of the two particles
exchanged. A model for the stress-energy tensor of point-masses (say, at 2PN
order) is

Tμν
point−mass(x, t) = μ1(t)v

μ
1 (t)vν

1 (t)δ[x− y1(t)] + 1 ↔ 2 ; (70a)

μ1(t) ≡
m1√

(ggρσ)1
vρ
1v

σ
1

c2

, (70b)
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where δ denotes the three-dimensional Dirac measure, and gμν the metric co-
efficients in harmonic coordinates (g ≡ detgμν). The notation (ggμν)1 means
the value at the location of particle 1. However, due to the presence of the
Dirac measure at particles 1 and 2, the metric coefficients will be singular
at 1 and 2. Therefore, we must supplement the model (70) by a method of
“regularization” able to give a sense to the ill-defined limit at 1 or 2. A pri-
ori the choice of one or another regularization constitutes a fully-qualified
element of the model of point-particles. In the following we systematically
employ the Hadamard regularization, based on the Hadamard “partie finie”
of a divergent integral [97,98].

Let us discuss an example. The “Newtonian” potential U , defined by
U = Δ−1(−4πGσ), where σ is given by (61a) [we have V = U + O(1/c2)],
follows from (70a) as

U =
Gμ1

r1

[
1 +

v2
1

c2

]
+ 1 ↔ 2 , (71)

where r1 = |x−y1|. To Newtonian order U = Gm1/r1 +O(1/c2)+1 ↔ 2. We
compute U at the 1PN order: from (70b) we deduce at this order μ1/m1 =
1− (U)1/c2 + v2

1/2c
2 +O(1/c4), which involves U itself taken at point 1, but

of course this does not make sense because U is singular at 1 and 2. Now,
after applying the Hadamard regularization (described below), we obtain
unambiguously the standard Newtonian result (U)1 = Gm2/r12 + O(1/c2),
where r12 = |y1 − y2|, that we insert back into μ1. So, U at 1PN, and its
regularized value at 1, read

U =
Gm1

r1

(
1 +

1
c2

[
−Gm2

r12
+

3
2
v2
1

])
+ O

(
1
c4

)
+ 1 ↔ 2 , (72a)

(U)1 =
Gm2

r12

(
1 +

1
c2

[
−Gm1

r12
+

3
2
v2
2

])
+ O

(
1
c4

)
. (72b)

7.1 Hadamard Partie Finie Regularization

We consider the class of functions of the field point x which are smooth
on IR3 except at the location of the two source points y1,2, around which
the functions admit some power-like expansions in the radial distance r1 =
|x−y1|, with fixed spatial direction n1 = (x−y1)/r1 (and idem for 2). Thus,
for any F (x) in this class, we have

F =
∑

a

ra
1f1(a)(n1) (when r1 → 0) ; (73a)

F =
∑

a

ra
2f2(a)(n2) (when r2 → 0) , (73b)
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where the summation index a ranges over values in ZZ bounded from below,
a ≥ −a0 (we do not need to be more specific), and where the coefficients of the
various powers of r1,2 depend on the spatial directions n1,2. In (73) we do not
write the remainders for the expansions because we don’t need them; simply,
we regard the expansions (73) as listings of the various coefficients f1(a) and
f2(a). We assume also that the functions F in this class decrease sufficiently
rapidly when |x| → ∞, so that all integrals we consider are convergent at
infinity.

The integral
∫

d3xF is in general divergent because of the singular be-
haviour of F near y1,2, but we can compute its partie finie (Pf) in the sense
of Hadamard [97,98]. Let us consider two volumes surrounding the two sin-
gularities, of the form r1 ≤ sρ1(n1) (and similarly for 2), where s measures
the size of the volume and ρ1 gives its shape as a function of the direction
n1 (ρ1 = 1 in the case of a spherical ball). Using (73) it is easy to deter-
mine the expansion when s → 0 of the integral extending on IR3 deprived
from the two previous volumes, and then to subtract from the integral all the
divergent terms when s → 0 in the latter expansion. The Hadamard partie
finie is defined to be the limit when s → 0 of what remains. As it turns out,
the result can be advantageously re-expressed in terms of an integral on IR3

deprived from two spherical balls (ρ1,2 = 1), at the price of introducing two
constants s1,2 which depend on the shape of the two regularizing volumes
originally considered. With full generality the Hadamard partie finie of the
divergent integral reads

Pf
∫

d3x F ≡ lim
s→0

{∫
r1>s
r2>s

d3x F

+
∑

a+3≤−1

sa+3

a + 3

∫
dΩ1f1(a) + ln

(
s

s1

) ∫
dΩ1f1(−3) + 1 ↔ 2

}
(74)

where s1 is given by

ln s1 =

∫
dΩ1f1(−3) ln ρ1∫

dΩ1f1(−3)
. (75)

Because of the two arbitrary constants s1,2 the Hadamard partie finie is am-
biguous, and one could think a priori that there is no point about defining a
divergent integral by means of an ambiguous expression. Actually the point
is that we control the origin of these constants: they come from the coeffi-
cients of 1/r3

1,2 in the expansions of F , which generate logarithmic terms in
the integral. As we shall see the constants s1,2 do not appear in the post-
Newtonian metric up to the 2.5PN order (they are expected to appear only
at 3PN order).

We can also give a meaning to the value of the function F at the location
of particle 1 for instance, by taking the average over all directions n1 of the
coefficient of the zeroth power of r1 in (73a), namely
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(F )1 ≡
∫

dΩ1

4π
f1(0) . (76)

We refer also to the definition (76) as the Hadamard partie finie (of the
function F at 1) because this definition is closely related to the definition
(74) of the Hadamard partie finie of a divergent integral. To see this, apply
(74) to the case where the function F is actually a gradient, F = ∂iG, where
G satisfies (73) [it is then clear that F itself satisfies (73)]. We find

Pf
∫

d3x ∂iG = −4π(ni
1r

2
1G)1 − 4π(ni

2r
2
2G)2 (77)

where in the right side the values at 1 and 2 are taken in the sense of the
Hadamard partie finie (76). This nice connection between the Hadamard
partie finie of a divergent integral and that of a singular function is clearly
understood from applying the Gauss theorem on two surfaces r1,2 = s sur-
rounding the singularities (there is no dependence on the constants s1,2).

7.2 Multipole Moments of Point-Mass Binaries

To compute the source moments (36) of two point-particles we insert (70) in
place of the stress-energy tensor Tμν of a continuous source, and we pick up
the Hadamard partie finie [in the sense of (74)] of all integrals. This ansatz
reads

(IL)point−mass = Pf
{
IL[Tμν

point−mass]
}

; (78a)

(JL)point−mass = Pf
{
JL[Tμν

point−mass]
}

. (78b)

As we have seen in (69), the source multipole moments involve at high
PN order many (non-compact-support) non-linear contributions which can be
expressed in terms of retarded potentials such as V . The paradigm of such
non-linear contributions is a term involving the quadratic product of two
(derivatives of) potentials V , say ∂V ∂V , or, neglecting O(1/c2) corrections,
∂U∂U . To Newtonian order U is given by Gm1/r1 + Gm2/r2 and it is easily
checked that this paradigmatic term can be written as a certain derivative
operator, say ∂∂, acting on the elementary integral (assuming for simplicity
l = 2)

Yij(y1,y2) ≡ − 1
2π

FPB=0

∫
d3x |x/r0|B

x̂ij

r1r2
. (79)

We see that the integral would be divergent at infinity without the finite part
operation. However, it is perfectly well-behaved near 1 and 2 where there is
no need of a regularization. The integral (79) can be evaluated in various
ways; the net result is [24,72]
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Yij =
r12

3

[
y<ij>
1 + y<i

1 yj>
2 + y<ij>

2

]
(80)

where < ij >≡ STF(ij). Starting at 3PN order we meet some elementary
integrals which need the regularization at 1 or 2 in addition to involving the
finite part at infinity. An example is

Zij(y1) ≡ − 1
2π

Pf
{

FPB=0

∫
d3x |x/r0|B

x̂ij

r3
1

}
. (81)

To obtain this integral one splits it into a near-zone integral extending over
the domain r1 < R1 (say), and a far-zone integral extending over R1 < r1.
The Hadamard regularization at 1 applies only to the near-zone integral,
while the finite part at B = 0 is needed only for the far-zone integral. The
result, found to be independent of the radius R1, reads [77]

Zij =
[
2 ln

(
s1

r0

)
+

16
15

]
y<ij>
1 . (82)

In this case we find an explicit dependence on both the constants r0 due to
the finite part at infinity, and s1 due to the Hadamard partie finie near 1 [see
(74)]. However these constants do not enter the multipole moments before
the 3PN order (collaboration with Iyer and Joguet [77]).

A long computation, done in [72], yields the mass-type quadrupole mo-
ment at the 2PN order fully reduced in the case of two point-masses moving
on a circular orbit. The method is to start from (69) (issued from [24]) and to
employ notably the elementary integral (79)-(80) (see also [72] for the treat-
ment of a cubically non-linear term). An equivalent result has been obtained
by Will and Wiseman using their formalism [75]. In a mass-centered frame
the moment is of the form

Iij = μ

(
A ŷij + B

v̂ij

ω2

)
+ O

(
1
c5

)
, (83)

where yi = yi
1−yi

2 and vi = vi
1−vi

2, where ω denotes the binary’s Newtonian
orbital frequency [ω2 = Gm/r3

12 with m = m1+m2], and where μ = m1m2/m
is the reduced mass. The point is to obtain the coefficients A and B developed
to 2PN order in terms of the post-Newtonian parameter γ = Gm/r12c

2,
where we recall that r12 is the distance between the two particles in harmonic
coordinates. Untill 2PN we find some definite polynomials in the mass ratio
ν = μ/m (such that 0 < ν ≤ 1/4):

A = 1 + γ

[
− 1

42
− 13

14
ν

]
+ γ2

[
− 461

1512
− 18395

1512
ν − 241

1512
ν2

]
, (84a)

B = γ

[
11
21

− 11
7

ν

]
+ γ2

[
1607
378

− 1681
378

ν +
229
378

ν2
]

. (84b)



Post-Newtonian Gravitational Radiation 263

The 2PN mass quadrupole moment (83)-(84) is part of a program aiming
at computing the orbital phase evolution of inspiralling compact binaries to
high post-Newtonian order (see Sect. 7.4). First-order black-hole perturba-
tions, valid in the test-mass limit ν → 0 for one body, have already achieved
the very high 5.5PN order [87,99–101]. Recovering the result of black-hole
perturbations in this limit constitutes an important check of the overall for-
malism. For the moment it passed the check to 2.5PN order [72,73]; this is
quite satisfactory regarding the many differences between the present ap-
proach and the black-hole perturbation method.

7.3 Equations of Motion of Compact Binaries

The equations of motion of two point-masses play a crucial role in accounting
for the observed dynamics of the binary pulsar PSR1913+16 [1–3,22], and
constitute an important part of the program concerning inspiralling compact
binaries. The motivation for investigating rigorously the equations of motion
came in part from the salubrious criticizing remarks of Jürgen Ehlers et al
[7]. Four different approaches have succeeded in obtaining the equations of
motion of point-mass binaries complete up to the 2.5PN order (dominant
order of radiation reaction): the “post-Minkowskian” approach of Damour,
Deruelle and colleagues [16–19]; the “Hamiltonian” approach of Schäfer and
predecessors [102,103,57,58] ; the “extended-body” approach of Kopejkin et al
[104,105]; and the “post-Newtonian” approach of Blanchet, Faye and Ponsot
[74]. The four approaches yield mutually agreeing results.

The post-Newtonian approach [74] consists of (i) inserting the point-mass
stress-energy tensor (70) into the 2.5PN metric in harmonic coordinates given
by (63); (ii) curing systematically the self-field divergences of point-masses us-
ing the Hadamard regularization; and (iii) substituting the regularized metric
into the standard geodesic equations. For convenience we write the geodesic
equation of the particle 1 in the Newtonian-like form

dPi
1

dt
= F i

1 (85)

where the (specific) linear momentum Pi
1 and force F i

1 are given by

Pi
1 = c

(
vμ
1 giμ√

−gρσv
ρ
1v

σ
1

)
1

; F i
1 =

c

2

(
vμ
1 v

ν
1∂igμν√

−gρσv
ρ
1v

σ
1

)
1

. (86)

Crucial in this method, the quantities are evaluated at the location of particle
1 according to the rule (76). All the potentials (62) and their gradients are
evaluated in a way similar to our computation of U in (72), and then inserted
into (85)-(86). We “order-reduce” the result, i.e. we replace each acceleration,
consistently with the approximation, by its equivalent in terms of the posi-
tions and velocities as given by the (lower-order) equations of motion. After
simplication we find, in agreement with other methods,
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dvi
1

dt
= − Gm2

r2
12

ni
12 +

Gm2

r2
12c

2

{
vi
12 [4(n12v1)− 3(n12v2)]

+ ni
12

[
−v2

1 − 2v2
2 + 4(v1v2) +

3
2
(n12v2)2 + 5

Gm1

r12
+ 4

Gm2

r12

]}
+

Gm2

r2
12c

4 n
i
12

{[
−2v4

2 + 4v2
2(v1v2)− 2(v1v2)2

+
3
2
v2
1(n12v2)2 +

9
2
v2
2(n12v2)2 − 6(v1v2)(n12v2)2 −

15
8

(n12v2)4
]

+
Gm1

r12

[
−15

4
v2
1 +

5
4
v2
2 −

5
2
(v1v2)

+
39
2

(n12v1)2 − 39(n12v1)(n12v2) +
17
2

(n12v2)2
]

+
Gm2

r12

[
4v2

2 − 8(v1v2) + 2(n12v1)2 − 4(n12v1)(n12v2)− 6(n12v2)2
]

+
G2

r2
12

[
−57

4
m2

1 − 9m2
2 −

69
2

m1m2

]}
+

Gm2

r2
12c

4 v
i
12

{
v2
1(n12v2) + 4v2

2(n12v1)− 5v2
2(n12v2)− 4(v1v2)(n12v1)

+ 4(v1v2)(n12v2)− 6(n12v1)(n12v2)2 +
9
2
(n12v2)3

+
Gm1

r12

[
−63

4
(n12v1) +

55
4

(n12v2)
]

+
Gm2

r12
[−2(n12v1)− 2(n12v2)]

}
+

4G2m1m2

5c5r3
12

{
ni

12(n12v12)
[
−6

Gm1

r12
+

52
3

Gm2

r12
+ 3v2

12

]
+ vi

12

[
2
Gm1

r12
− 8

Gm2

r12
− v2

12

] }
+O

(
1
c6

)
, (87)

[where ni
12 = (yi

1 − yi
2)/r12; vi

12 = vi
1 − vi

2; and e.g. (n12v1) denotes the Eu-
clidean scalar product]. At the 1PN or 1/c2 level the equations were obtained
before by Lorentz an Droste [20], and by Einstein, Infeld and Hoffmann [21].
The 2.5PN or 1/c5 term represents the radiation damping in harmonic co-
ordinates [correct because the metric (63) we started with matches to the
post-Minkowskian exterior field]. In the case of circular orbits, the equations
simplify drastically:

dvi
12

dt
= −ω2

2PNyi
12 −

32G3m3ν

5c5r4
12

vi
12 + O

(
1
c6

)
, (88)

where the orbital frequency ω2PN of the 2PN circular motion reads
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ω2
2PN =

Gm

r3
12

[
1 + (−3 + ν)γ +

(
6 +

41
4

ν + ν2
)

γ2
]

(89)

(the post-Newtonian parameter is γ = Gm/c2r12; and ν = μ/m).

7.4 Gravitational Waveforms of Inspiralling Compact Binaries

The gravitational radiation field and associated energy flux are given by (52)
and (57) in terms of time-derivatives of the radiative multipole moments,
themselves related to the source multipole moments by formulas such as (56).
Furthermore, at a given post-Newtonian order, the source moments admit
some explicit though complicated expressions such as (68)-(69), which, when
specialized to (non-spinning) point-mass circular binaries, yield e.g. (83)-(84).

Now, for insertion into the radiation field and energy flux, one must com-
pute the time-derivatives of the binary moments, with appropriate order-
reduction using the binary’s equations of motion (87)-(89). This yields in
particular the fully reduced (up to the prescribed post-Newtonian order)
gravitational waveform of the binary, or more precisely the two independent
“plus” and “cross” polarization states h+ and h×. The result to 2PN order
is written in the form

h+,× =
2Gmνx

c2R

{
H

(0)
+,× + x1/2H

(1/2)
+,× + xH

(1)
+,× + x3/2H

(3/2)
+,× + x2H

(2)
+,×

}
,

(90)
where, for convenience, we have introduced a post-Newtonian parameter
which is directly related to the orbital frequency: x = (Gmω2PN/c3)2/3, where
ω2PN is given for circular orbits by (89). The various post-Newtonian coeffi-
cients in (90) depend on the cosine and sine of the “inclination” angle between
the detector’s direction and the normal to the orbital plane (ci = cos i and
si = sin i), and on the masses through the ratios ν = μ/m and δm/m, where
δm = m1 − m2. The result for the “plus” polarization (collaboration with
Iyer, Will and Wiseman [106]) is

H
(0)
+ = −(1 + c2i ) cos 2ψ , (91a)

H
(1/2)
+ = −si

8
δm

m

[
(5 + c2i ) cosψ − 9(1 + c2i ) cos 3ψ

]
, (91b)

H
(1)
+ =

1
6

[
19 + 9c2i − 2c4i − ν(19− 11c2i − 6c4i )

]
cos 2ψ

−4
3
s2

i (1 + c2i )(1− 3ν) cos 4ψ , (91c)

H
(3/2)
+ =

si

192
δm

m

{[
57 + 60c2i − c4i − 2ν(49− 12c2i − c4i )

]
cosψ
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−27
2

[
73 + 40c2i − 9c4i − 2ν(25− 8c2i − 9c4i )

]
cos 3ψ

+
625
2

(1− 2ν)s2
i (1 + c2i ) cos 5ψ

}
− 2π(1 + c2i ) cos 2ψ , (91d)

H
(2)
+ =

1
120

[
22 + 396c2i + 145c4i − 5c6i +

5
3
ν(706− 216c2i − 251c4i + 15c6i )

−5ν2(98− 108c2i + 7c4i + 5c6i )
]

cos 2ψ

+
2
15

s2
i

[
59 + 35c2i − 8c4i −

5
3
ν(131 + 59c2i − 24c4i )

+5ν2(21− 3c2i − 8c4i )
]

cos 4ψ

−81
40

(1− 5ν + 5ν2)s4
i (1 + c2i ) cos 6ψ

+
si

40
δm

m

{[
11 + 7c2i + 10(5 + c2i ) ln 2

]
sinψ − 5π(5 + c2i ) cosψ

−27
[
7− 10 ln(3/2)

]
(1 + c2i ) sin 3ψ + 135π(1 + c2i ) cos 3ψ

}
.

(91e)

The “cross” polarization admits a similar expression (see [106]). Here, ψ
denotes a particular phase variable, related to the actual binary’s orbital
phase φ and frequency ω ≡ ω2PN by

ψ = φ− 2Gmω

c3
ln

(
ω

ω0

)
; (92)

φ is the angle, oriented in the sense of the motion, between the vector sepa-
ration of the two bodies and a fixed direction in the orbital plane (since the
bodies are not spinning, the orbital motion takes place in a plane). In (92),
ω0 denotes some constant frequency, for instance the orbital frequency when
the signal enters the detector’s frequency bandwidth; see [106] for discussion.

The previous formulas give the waveform of point-mass binaries whenever
the frequency and phase of the orbital motion take the values ω and φ. To get
the waveform as a function of time, we must replace ω and φ by their explicit
time evolutions ω(t) and φ(t). Actually, the frequency is the time-derivative
of the phase: ω = dφ/dt. The evolution of the phase is entirely determined,
for circular orbits, by the energy balance equation dE/dt = −L relating the
binding energy E of the binary in the center of mass to the emitted energy
flux L. E is computed using the equations of motion (87), and L follows
from (57) and application of the previous formalism [changing the radiative
moments to the source moments, applying (83)-(84), etc...]; the net result for
the 2.5PN orbital phase [72,75,73] is
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φ = φ0 −
1
ν

{
Θ5/8 +

(
3715
8064

+
55
96

ν

)
Θ3/8 − 3

4
πΘ1/4

+
(

9275495
14450688

+
284875
258048

ν +
1855
2048

ν2
)

Θ1/8

+
(
− 38645

172032
− 15

2048
ν

)
π lnΘ

}
, (93)

where φ0 is a constant phase (determined for instance when the frequency is
ω0), and Θ the convenient dimensionless time variable

Θ =
c3ν

5Gm
(tc − t) , (94)

tc being the instant of coalescence at which, formally, ω(t) tends to infinity (of
course, the post-Newtonian method breaks down before the final coalescence).
All the results are in agreement, in the limit ν → 0, with those of black-hole
perturbation theory [87,99–101].

8 Conclusion

The formalism reviewed in this article permits investigating in principle all
aspects of the problem of dynamics and gravitational-wave emission of a
slowly-moving isolated system (with, say, v/c ∼ 0.3 at most): the generation
of waves, their propagation in vacuum, the back-reaction onto the system, the
structure of the asymptotic field, and most importantly the relation between
the far-field and the source parameters. Of course, the formalism is merely
post-Newtonian and never “exact”, but in applications to astrophysical ob-
jects such as inspiralling compact binaries this should be sufficient provided
that the post-Newtonian approximation is carried to high order.

Furthermore, there are several places in the formalism where some results
are valid formally to any order of approximation. For instance, the source mul-
tipole moments are related to the infinite formal post-Newtonian expansion
of the pseudo-tensor [see (18) or (36)], and the post-Minkowskian iteration
of the exterior field is performed to any non-linear order [see (43)]. In such
a situation, where an infinite approximate series can be defined, there is the
interesting question of its relation to a corresponding element in the exact
theory. For the moment the only solid work concerns the post-Minkowskian
approximation of the exterior vacuum field, which has been proved to be
asymptotic [26]. Likewise it is plausible that the expressions of the source
multipole moments could be valid in the case of exact solutions.

The most important part of the formalism where a general prescription
for how to proceed at any approximate step is missing, is the post-Newtonian
expansion for the field inside the isolated system. For instance, though the
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multipole moments are given in terms of the formal post-Newtonian expan-
sion of the pseudo-tensor, no general algorithm for computing explicitly this
post-Newtonian expansion is known. An interesting task would be to define
such an algorithm, in a manner similar to the post-Minkowskian algorithm
in Sect. 4. In the author’s opinion, the post-Newtonian algorithm should be
defined conjointly with the post-Minkowskian algorithm, and should rely on
the matching equation (16), so as to convey into the post-Newtonian field
the information about the exterior metric.

Note that even if a general method for implementing a complete approx-
imation series is defined, this method may be unworkable in practical cal-
culations, because not explicit enough. For instance the post-Minkowskian
series (43) is defined in terms of “iterated” retarded integrals, but needs to
be suplemented by some formulas, to be used in applications, for the retarded
integral of a multipolar extended source. In this respect it would be desirable
to develop the formulas generalizing (50)-(51) to any non-linear order. This
should permit in particular the study of the general structure of tails, tails
of tails, and so on.

For the moment the only application of the formalism concerns the ra-
diation and motion of point-particle binaries. Of course it is important to
keep the formalism as general as possible, and not to restrict oneself to a
particular type of source, but this application to point-particles offers some
interesting questions. Indeed, it seems that the post-Newtonian approxima-
tion used conjointly with a regularization à la Hadamard works well, and that
one is getting closer and closer to an exact (numerical) solution correspond-
ing to the dynamics and radiation of two black-holes. So, in which sense does
the post-Newtonian solution (corresponding to point-masses without hori-
zons) approach a true solution for black-holes? Does the adopted method of
regularizing the self-field play a crucial role? Is it possible to define a regu-
larization consistently with the post-Newtonian approximation to all orders?
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86. M. Streubel and R. Schattner (1981) Ann. Inst. H. Poincaré 34, 145
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1 Introduction

Duality is presently considered the key to the Holy Grail of String Theory –
it is supposed to provide links between the five known different superstring
theories in ten dimensions, hoped to be just different limits of one unique
eleven dimensional theory [1]. The main role of duality is to relate two differ-
ent regimes – e.g. one of weak and one of strong coupling – of these theories.
In most cases duality is not a very precise concept, just because the strong
coupling regime is a matter of speculation. This is rather different from the
duality transformations in the gravitational theories considered in this work,
which have a very precise meaning – not the least because we are dealing with
classical field theories (compare, however, [2] and for a modest attempt to
use duality symmetry in Quantum Gravity, see [3]). The historical example of
all these dualities is the duality between electric and magnetic fields in elec-
trodynamics, which, when expressed in terms of the field strength, is just an
example of the mathematical notion of Hodge duality for differential forms.
Actually, the source-free Maxwell equations are not only invariant under a
discrete duality, but under a continous one-parameter group of duality rota-
tions. It is this kind of transformations, which is the subject of this article.
Whereas, in general, the electromagnetic duality rotations are an ‘on-shell’
symmetry, i.e. a symmetry of the equations of motion and not of the action,
the situation changes, if one considers time-independent solutions. In this
case also the magnetic field can be derived from a (pseudo) scalar potential
and the duality rotations expressed in terms of scalar potentials become a
bona fide ‘off-shell’ symmetry of the ‘dimensionally reduced’ three dimen-
sional theory. This replacement of the vector potential by a scalar one has
analogues in higher dimensions playing an important role in the construction
of supergravity theories through the process of dimensional reduction. A typ-
ical example is the (pseudo) scalar ‘axion’, obtained as the dual of a gauge
field 2-form in 4 dimensions. This scalar axion combines nicely with another
scalar, the dilaton to a doublet giving rise to an SL(2) group of non-linear
duality transformations [4]. A particular element of this group, replacing the
dilaton by its inverse, lies at the heart of string duality (‘S-duality’)[5], where
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the expectation value of the dilaton plays the role of a string coupling con-
stant.

Descending from four to three dimensions the group of continous electro-
magnetic duality transformations is extended from the compact group SO(2)
to the full non-compact Euclidean group in two dimensions. The reason for
this enhancement is simply the possibility to shift the potentials by a constant
without changing the field strengths.

Let us now turn to (vacuum) gravity, also restricting ourselves to station-
ary (time-independent) solutions and introduce the ‘twist potential’, playing
a similar role as the magnetic potential in electrodynamics. It was Ehlers
[6], who first observed that there is a discrete duality symmetry, relating the
twist potential and the tt-component of the metric (the latter playing a sim-
ilar role as the electric potential). Later it was recognized [7] that there is a
whole SL(2) group acting on this doublet of potentials transforming station-
ary solutions of Einstein’s equations into each other and that the potentials
themselves can be interpreted as coordinates of a 2-dimensional ‘potential
space’ with the geometry of the coset space SL(2)/SO(2). In fact there is a
strong similarity between electric charge and mass and magnetic charge and
the so-called NUT charge on the other hand.

This analogy becomes even closer in the Einstein–Maxwell theory.
Combining the two scalar potentials of gravity with those of the sta-
tionary EM field, one may use them to parametrize the coset space
SU(2, 1)/S(U(1, 1)× U(1)) equipped with a natural action of the non-
compact group SU(2, 1) [8]. This group contains ‘Harrison’ transformations
[9] transforming mass into charge, e.g. the Schwarzschild solution into the
Reissner-Nordströ m solution.

The appearance of a non-compact group of ‘hidden’ duality transforma-
tions like SU(2, 1) is a rather general phenomenon in the process of ‘Kaluza–
Klein’ reduction of the maximal eleven dimensional supergravity theory [10].
Many different ‘hidden’ duality symmetries were found in various dimensions
and under various truncations, all having in common the peculiar property
that the related coset spaces parametrized by the scalars are non-compact
Cartan Symmetric Spaces [11]. The underlying reason for this fact is still
unknown. In the paper [12] with Breitenlohner and Gibbons we were able to
determine a large class of four-dimensional theories containing abelian vector
fields and scalars besides the gravitational field yielding suitable symmet-
ric spaces upon reduction to three dimensions. Such field theories for scalar
fields taking their values in a Riemannian space are familiar in Quantum
Field Theory as non-linear σ-models.

In view of the situation in the Maxwell theory one may wonder, whether
it is possible to lift the off-shell symmetries to corresponding on-shell sym-
metries in four (or even higher) dimensions. An attempt in this direction for
N = 8 supergravity has been made by Nicolai and de-Wit [13]. But let us
proceed in the opposite direction. Even more remarkable is the enhancement
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of ‘hidden’ duality symmetries, when the process of dimensional reduction
is performed one step further leading to an effective 2-dimensional theory.
The simplest example is provided by solutions of vacuum gravity with a two-
dimensional abelian isometry group, i.e. with two commuting Killing vector
fields. It was Geroch [14] who observed that each given stationary, axially
symmetric solution of the vacuum Einstein equations is accompanied by an
infinite family of potentials, which in turn allowed for an infinite parame-
ter set of infinitesimal transformations acting on the initial solution. What
remained unclear in Geroch’s work was the precise Lie algebra structure
of these infinitesimal transformations and even more so the structure of a
corresponding group (the ‘Geroch’ group) of finite transformations. Later
the problem of getting finite transformations found some seemingly different
solutions (‘Solution Generating Methods’) – the HKX-transformations [15],
the Bäcklund-Transformations of Harrison [16], Kramer and Neugebauer [17]
and the Riemann–Hilbert Method of Ernst and Hauser [18]. While the first
authors were mainly concerned with the actual construction of hitherto un-
known solutions (‘Multi-Kerr’), Ernst and Hauser made the first serious effort
to give the notion of the ‘Geroch’ group a more precise mathematical foun-
dation. A deeper understanding of these somewhat mysterious constructions
and their interrelations is provided by the observation – made already before
the advent of the ‘Solution Generating Methods’ – that the corresponding
2-dimensional reduced theory is completely integrable. This property is ex-
pressed by the existence of a ‘Lax Pair’ [19,20], a system of linear differential
equations with a ‘spectral parameter’, whose compatibility is equivalent to
the non-linear field equations. It is important to observe that this fact is
essentially based on the non-linear σ-model structure of the reduced field
equations and thus is also valid for the 2-d reductions of the large class
of 4-dimensional models considered in [12]. In fact, for the analysis of the
group-theoretical significance of various steps in the implementation of the
infinite dimensional Geroch group this was a valuable guiding principle [10].
In [21] it was shown how the group theoretical structure of the symmetric-
space non-linear σ-models provides the clue to the analysis of the Geroch
group, resp. its implementation. It is possible to construct a natural exten-
sion (G(∞), H(∞), τ (∞)) of the triple (G,H, τ) defining the symmetric space
G/H (where τ is the involutive automorphism leaving H invariant [11]). Here
G(∞) and H(∞) are infinite dimensional groups of holomorphic functions (of
the spectral parameter of the Lax pair) with values in the complexification
of G. The elements of the coset space G(∞)/H(∞) are solutions P(t, x) of
the system of linear differential equations mentioned before. Implementing
the group G(∞) on the coset space G(∞)/H(∞) turns out to be equivalent to
the solution of a factorization problem for group-valued analytic functions,
a so-called Riemann–Hilbert problem. While the Bäcklund transformations
correspond to meromorphic group elements, the HKX transformations may
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be understood as exponentials of certain nil-potent elements of the underlying
affine Lie algebra.

Whereas for most of the algebraic structures connected with this complete
integrability the signature of the two Killing vectors providing the reduction
to the 2-dimensional theory is irrelevant, the analytical properties of the so-
lutions are rather different and thus the results of the stationary, axially sym-
metric case cannot be directly transfered to e.g. cylindrical or plane waves.
Nevertheless some attempts with interesting results have also been made for
these cases [22]. Another interesting development – in particular in view of
a possible quantization – is the inclusion of fermions for the supersymmetric
models [23].

Although it may be very satisfactory for esthetical reasons to see all these
beautiful ‘hidden’ duality symmetries emerge, there is also some practical
‘spin-off’. The duality groups are, in a sense, large enough to act transitively
on certain families of solutions. This not only allows to actually construct all
solutions of such a family from the simplest member (usually some solution
of the vacuum theory like Minkowski or Schwarzschild), but also allows to
prove uniqueness theorems for these families. This has to do with another
aspect besides the group structure – the solutions of the 3-d resp. 2-d field
equations are harmonic maps [24,25]. Such maps enjoy rather strong regu-
larity and uniqueness properties, which can be used to generalize the well
known uniqueness theorems [26] for static resp. stationary, axially symetric
black hole solutions of the vacuum theory resp. Einstein-Maxwell theory to
the large class of theories considered here. The corresponding proofs are re-
markably simple and elegant. As to be expected for harmonic maps these
results are strongest when the 3-space and the target space have definite
curvature, happening for stationary, axially symmetric solutions [27].

The organization of this article is as follows:

• Section 2 is devoted to a short discussion of the duality symmetry of the
flat space Maxwell equations.

• In Sect. 3 the emergence of hidden duality symmetries in the process of
Kaluza–Klein reduction of higher dimensional (super) gravity theories is
demonstrated.

• In Sect. 4 we discuss the complete integrability of the theories obtained
by reduction to 2 dimensions, in particular the implementation of the
infinite dimensional Geroch group.

• In Sect. 5 the σ-model structure obtained in the previous section is ap-
plied to construct spherically symmetric solutions and to show existence
and uniqueness properties of static resp. stationary, axially symmetric
black hole solutions.

• In the Appendix A we collect some important group theoretical properties
of symmetric space non-linear σ-models and Appendix B contains the
results of a recent structural analysis [28] of the models considered in
[12].
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2 Electromagnetic Duality

The best known example of duality transformations are those of the Maxwell
field (see [29] for a recent exposition and further references). In vacuum the
Maxwell equations are

∂μF
μν = 0 ∂μ

∗Fμν = 0 with ∗Fμν =
1
2
εμνκλFκλ , (1)

or, when written in terms of the electric field E and the magnetic field B,

∂ · E = 0, ∂ ∧ E + Ḃ = 0,
∂ ·B = 0, ∂ ∧B − Ė = 0 . (2)

These equations are not only invariant under the obvious discrete exchange
F → ∗F , ∗F → −F resp. E → B ,B → −E, but even under the continuous
rotations (conveniently written in complex U(1) form)

F + i∗F → eiθ(F + i∗F ) resp. E + iB → eiθ(E + iB) . (3)

In contrast to the energy density 1
2 |E + iB|2 and the momentum density

E∧B = 1
2i (E−iB)∧(E+iB), which are invariant under the duality rotations,

the Lagrangean density E2 −B2 and the toplogical density E ·B – real and
imaginary part of (E + iB)2 – are not, but transform into each other. Yet,
since E · B = 1

4∂μ(Aν
∗Fμν), the variation of the action under infinitesimal

duality transformations is a surface term vanishing under suitable boundary
conditions. There exists also a conserved Noether current corresponding to
this variation. But since the second variation yields again the action density,
the action is not invariant under finite such transformations. Thus, although
the equations of motion are invariant under duality rotations, the action is
not, and hence they are what is called an ‘on-shell’ symmetry in contrast to
a true ‘off-shell’ symmetry, leaving the action invariant.

There is another aspect of asymmetry, connected with the introduction of
a vector potential Aμ. The usual choice, valid also in the presence of electrical
charge, is to interprete the equation ∂ · ∗F = 0 as the integrability condition
(Bianchi identity) for the existence of a vector potential Fμν = ∂μAν −∂νAμ.
In vacuum, however, nothing prevents us to introduce a similar potential Ãμ

for the dual of the field strength, ∗Fμν = ∂μÃν −∂νÃμ, interpreting ∂ ·F = 0
as Bianchi identity. Combining A and Ã to a 2-component potential A we
may write Eq. (1) as [30]

∂μF
μν = 0 and Fμν = Ω∗Fμν with Ω =

(
0 1
−1 0

)
. (4)

The action can be expressed either through A or, equivalently, through Ã,
but not in terms of A.
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The situation changes, if we consider stationary solutions, i.e. solutions
with a time-independent field strength. Then the Maxwell equations (2) tell
us that (at least locally) there are scalar potentials φ and ψ for the electric
resp. magnetic field. Combining them into a complex potential Φ ≡ φ + iψ
such that E + iB = ∂Φ the duality transformations can be implemented
through Φ → eiθΦ. Using a gauge in which the vector potential Aμ is time-
independent, the electric potential φ can be identified with A0 (and similarly
the magnetic potential ψ with Ã0). The remaining Maxwell equations ∂ ·E =
∂ ·B = 0 combine into ΔΦ = 0, which can be derived from the 3-dimensional
(‘dimensionally reduced’) action Sred = 1

2

∫
d3x |∂Φ|2, explicitly invariant

under the duality rotations. Thus the on-shell symmetry has become an off-
shell one in three dimensions, provided we use the magnetic potential ψ, i.e.
exchange a Bianchi identity with a field equation. In fact, the reduced action
is even invariant under the full 2-dimensional Euclidean group ISO(2), since
we can shift the potential Φ by a constant. Considering the potentials φ and ψ
as elements of the coset space ISO(2)/SO(2) we may interprete the action for
Φ as describing a non-linear σ-model. Although this may appear somewhat
fancy at this point, this way of describing the reduced theory nicely fits into
the structure found in the more general cases to be considered below.

One may wonder, how the 4-dimensional Lagrangean 1
2 (E2 − B2) has

turned into the 3-dimensional one 1
2 |∂Φ|2 = 1

2 (E2 + B2). One way to obtain
this is to add the Bianchi identity ∂ · B = 0 for Fij with a Lagrangean
multiplier ψ to the dimensionally reduced action∫

d3x
(1

2
(E2−B2)+ψ∂ ·B

)
=

∫
d3x

1
2

(
(∂φ)2 +(∂ψ)2− (B−∂ψ)2

)
, (5)

and to independently vary with respect to B and ψ. Variation with respect
to B then just yields the algebraic equation B = ∂ψ and thus the last term
can be omitted, if this identity is used as a definition for B.

The duality symmetry is broken, as soon as an electric current jμ is added
as a source for the Maxwell field. In order to maintain the symmetry a cor-
responding magnetic current j̃μ has to be added as a source for ∗F . Yet, the
latter violates the integrability condition for the existence of Aμ, as does
the electrical current for Ãμ. On the other hand we need the potentials as
dynamical variables for the local variational principle. However, the inte-
grability conditions are only violated, where the currents are non-vanishing.
Hence, supposing that we are dealing only with point-like electric and mag-
netic charges we can still maintain duality, if we cut out the positions of the
charges from space. Although this destroys the simply-connectedness of the
space, vector potentials nevertheless exist, if we allow for Dirac string singu-
larities (resp. connections on non-trivial U(1) bundles [31]). Denoting electric
resp. magnetic charges by q resp. p, we have to transform q+ ip → eiθ(q+ ip)
in order to maintain the duality invariance of the eqs.(1) in the presence of
the corresponding point sources. Classically q and p can take any value, but
quantum mechanically electric and magnetic charges of two particles have to
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obey the Dirac quantization condition

q1p2 = 2πn� n ∈ Z , (6)

again violating duality invariance. This can, however, be remedied introduc-
ing dyons carrying both types of charge and obeying the Dirac–Schwinger–
Zwanziger quantization condition [32,33]

q1p2 − q2p1 = 2π� n ∈ Z , (7)

defining a 2-dimensional lattice in the q, p-plane. There is one more important
aspect of the above quantization condition related to the fact that the charges
in a gauge theory act not only as sources of the gauge field, but also as
coupling constants of the minimal coupling of the point particles to gauge
fields, yielding the forces acting on the charges in the presence of the gauge
field. The relation (6) shows that weak coupling of electric charges (i.e. small
values of q in natural units) implies strong coupling in the magnetic sector
and vice versa. It is this aspect of duality that carries over to the modern
developments in string theory.

With the rise of non-abelian gauge groups in particle physics it was natural
to attempt an extension of the abelian duality transformations to Yang–Mills
theories. However, as was shown by Deser and Teitelboim [34], there is no
such extension acting on the potentials or the field strength. Nevertheless, as
was argued by Montonen and Olive [35], there might emerge a new form of
duality in the quantized theory relating the original gauge theory to its soliton
sector. Since in quantum field theory particles are represented by local fields
there is no distinction at this point between quantum particles corresponding
to solitons and those corresponding to the original gauge and Higgs fields.
The proposal of Montonen and Olive was to find a duality that exchanges the
two types of particles resp. fields. A specially favourable candidate for such a
duality is the N=4 extended supersymmetric gauge theory. More recently the
proposal of Montonen and Olive has been extended and made more concrete
by Seiberg and Witten [36].

3 Duality in Ka�luza–Klein Theories

Ka�luza-Klein theories in four space-time dimensions are obtained from Ein-
stein’s theory in D dimensions assuming the existence of an isometry group
generated by D− 4 Killing vector (KV) fields. Expressing the D-dimensional
theory in terms of 4-dimensional fields one obtains by this ‘dimensional re-
duction’ an effective four dimensional theory with gravity, vector fields and
scalar fields. Whereas for non-abelian isometry groups this is in general an
intricate procedure (except if the group acts freely, i.e. the orbits are home-
omorphic to the group itself), it is more or less straightforward for abelian
groups generated by commuting KV fields, which we will consider from now
on.
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For stationary resp. stationary, axially symmetric solutions of this four
dimensional theory further dimensional reductions yield three resp. two di-
mensional theories. In the following sections we will study the mechanism
of dimensional reduction first generally going from D to d dimensions and
subsequently for the special cases d=4, 3 and 2.

3.1 Dimensional Reduction from D to d Dimensions

We shall first investigate the general dimensional reduction of the gravita-
tional field in a D-dimensional space invariant under a (D − d)-dimensional
abelian isometry group. Under dimensional reduction we understand a pa-
rametrization of the D-dimensional gravitational field invariant under the
isometry group in terms of suitable fields defined on the space of orbits Σd of
the isometry group. In order for this orbit space to have a reasonable mani-
fold structure the action of the isometry group has to fulfil certain regularity
conditions [37]. However, since the decomposition of the gravitational field
is based on the Killing vector fields describing the action of the Lie algebra
of the isometry group such global conditions play no rôle in the following
discussion. They become however relevant, when one wants to reconstruct
the D-dimensional manifold. Although the process of reduction could clearly
be formulated in a completely geometrical, coordinate independent language
it turns out to be convenient to use an adapted coordinate system

xM = (xm, x̄m̄) with xm ∈ Rd and x̄m̄ ∈ RD−d (8)

such that the Killing vector fields are Km̄ = ∂
∂x̄m̄ and hence the fields consid-

ered are x̄-independent. The coordinates xm parametrize the d-dimensional
orbit space Σd — the space-time manifold of the reduced theory. The grav-
itational field in the D-dimensional space is described by the metric ten-
sor gKL or alternatively by the D-bein fields EA

K related to the metric by
gKL = (ET)K

AηABEB
L, where ηAB = (+−. . .−) is the D-dimensional

Minkowski metric. The invariance under local Lorentz transformations acting
on EA

K from the left can be used to bring the D-bein into the form

EA
K =

(
λ ẽa

k 0
ēā

m̄ Am̄
k ēā

k̄

)
, (9)

adapted to the decomposition into (D − d) and d-dimensional components.
The field ēā

k̄ is a (D − d)-bein for the isometry group, whereas ẽa
k is a d-

bein for the orbit space, λ is a suitable conformal factor chosen later in order
to simplify the Lagrangean. The fields Am̄

k are a column of D − d vector
potentials. The vanishing of the field strength F m̄

kl = ∂kA
m̄

l − ∂lA
m̄

k is the
condition for the hypersurface orthogonality of the Killing vector fields Km̄.
From ēā

m̄ we can build the metric m on the isometry group as usual m =
−ēTη̄ē with η̄ = (−. . .−) in case all the Killing vectors are space-like resp.
η̄ = (+−. . .−) if one of them is time-like. The D-bein field EA

K transforms
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covariantly under diffeomorphisms and local Lorentz transformations, but
the special triangular form eq.(9) is preserved only by a subgroup consisting
of

• diffeomorphisms and local Lorentz transformations in d dimensions,
• local Lorentz transformations in D − d dimensions depending only on x

and not on x̄,
• global GL(D − d) transformations acting linearly on the coordinates x̄,
• diffeomorphisms of the special form x̄ → x̄ + f̄(x) acting as gauge trans-

formations Am̄
k → Am̄

k + ∂kf̄
m̄(x) on the vector potentials.

The Lagrangean for the D-dimensional gravitational theory can be expressed
by the d-dimensional fields of the parametrization eq.(9)

L(D,d) = −1
2
ER

= ẽρλd−2
[
−1

2
R̃− 1

8
λ−2FT

klmF kl +
1
8
hkl

(
Tr(m−1∂kmm−1∂lm)

−4ρ−2∂kρ∂lρ− 8(d− 1)λ−1∂kλρ
−1∂lρ

−4(d− 1)(d− 2)λ−2∂kλ∂lλ
)]

(10)

where hkl = ηabẽ
a

kẽ
b
l and ρ = det(ē). R resp. R̃ are the scalar curvature of

EA
K resp. ẽa

k.
For d ≥ 3 we introduce μ = λ−2m. In addition we can choose λ = ρ− 1

d−2

and eliminate the scalar factor in front of R̃ and hence obtain the conventional
form of the gravitational Lagrangean in d dimensions

L(D,d) = ẽ
[
− 1

2 R̃− 1
8F

T
klμF

kl + hkl

8

(
Tr(μ−1∂kμμ

−1∂lμ)

− 1
D−2Tr(μ−1∂kμ)Tr(μ−1∂lμ)

)]
.

(11)

The Lagrangean L(D,d) describes the interaction of a d-dimensional gravita-
tional field ẽa

k with D−d abelian vector fields (Am̄)k and a symmetric matrix
μ of scalar fields, which can be considered as taking values in the coset spaces
GL(D − d)/SO(D − d) resp. GL(D − d)/SO(1, D − d− 1) depending on the
signature of the metric η̄. The expressions c1Tr(μ−1dμ)2 + c2(Tr(μ−1dμ))2

are invariant metrics for these spaces. The action for μ describes a so-called
non-linear σ-model. Non-linear σ-models are field theories over a space-time
manifold Σ with coordinates xα and metric gαβ(x) and fields assuming values
in a target space Φ̄ with coordinates φ̄i and metric γ̄ij . The action for such
a non-linear σ-model

SΦ̄ =
1
2

∫
Σ

√
gdxgαβ(x)∂αφ̄i(x)∂βφ̄

j(x)γ̄ij(φ̄(x)) (12)
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leads to the field equations

Dα∂αφi =
1√
h
∂α(

√
hhαβ∂βφ

i) + Γ i
jk(φ)∂αφj∂βφ

khαβ = 0 , (13)

where Γ i
jk are the Christoffel symbols of the metric γij . Solutions of eq.(13)

are known as harmonic maps in the mathematical literature [24]. Many of the
well-known (existence and uniqueness) results on harmonic functions could
be generalized to this class of maps. Some interesting applications in gravity
can be found in [25]. The target spaces considered here are very special –
they are riemannian resp. pseudo-riemannian symmetric spaces G/H [11].
In Appendix A we have collected some important group theoretical aspects
of these spaces. Using coset representatives M with values in the group G
(compare Appendix A for details and notation) we can rewrite eqs.(12,13) in
the form

SḠ/H̄ =
1
2

∫
Σ

√
gdxgαβ〈J̄α, J̄β〉 , (14)

DαJ̄α = 0 . (15)

where J̄α = 1
2M̄

−1∂αM̄ .
The vector fields (Am̄) transform with a vector representation of GL(D−

d) and are coupled non-trivially to the scalars, which play the rôle of space-
time dependent dielectric constants. In order to get a positive energy density
T 00 it is essential to have η̄ = (−. . .−), which we have already anticipated in
taking the additional dimensions greater than four all space-like.

3.2 Reduction to d = 4 Dimensions

The special case D = 5, d = 4 is the original Ka�luza theory [38] with the
Maxwell field Aκ and the scalar field m = ρ2.

There is an important aspect of the case d = 4 (D arbitrary) connected
with generalized duality transformations of the Maxwell fields Am̄

κ. The
Lagrangean eq.(11) contains the vector fields Am̄

κ only through their field
strengths F m̄

κν , since the scalar fields are neutral with respect to the gauge
group acting on the A’s. Correspondingly the field equation for the vector
fields is simply

(μFκλ);κ = 0 (16)

without any currents on the r.h.s.. In addition the field strengths obey the
Bianchi-identities

∗Fκν
;κ = 0 with ∗Fκν =

1
2ẽ

εκλμνFμν . (17)

Putting μFκλ = ∗F̃κλ we can interprete eq.(16) as the Bianchi-identity for
F̃κλ, which accordingly are the field strengths of potentials (Ãm̄)κ obeying
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the field equation
(μ−1F̃κλ);κ = 0 . (18)

The potentials Ãm̄κ provide an alternative description of the vector fields.
They transform, however, contragrediently under GL(D − 4) similarly as μ
and μ−1

Aκ −→ gAκ (19a)
Ãκ −→ (gT)−1Ãκ (19b)
μ −→ (gT)−1μg−1 (19c)

μ−1 −→ gμ−1gT . (19d)

Like in the case of source free electrodynamics in flat space discussed in Sect.
2 we can render the symmetry of the field equations (16) and (18) under the
discrete duality transformation Am̄

κ → Ãm̄κ explicit putting them together
to form the 2(D − 4) components of a vector potential

Aκ =
(

Aκ

Ãκ

)
(20)

with the field strength Fκν = ∂κAν − ∂νAκ obeying the twisted self-duality
constraint

Fκν = Ω ∗Fκν with Ω = Y M̄ =
(

0 1
−1 0

) (
μ 0
0 μ−1

)
(21)

satisfying again Ω2 = −1. Due to (21) the field equation

(ΩFκλ);κ = 0 (22)

is obviously equivalent to the Bianchi identity

(∗Fκλ);κ = 0. (23)

Again we may look for a Lagrangean describing the interaction of the Ãκ’s.
As described in Chap. 2 this can be achieved considering the field strength
Fκν as independent dynamical variable besides the potential Aκ and adding
the Bianchi identities with a Lagrange multiplier Ãκ

L = − ẽ

8
FT

κλμF
κλ → L′ = − ẽ

8
FT

κλμF
κλ +

ẽ

2
ÃT

κ
∗Fκλ

;λ (24)

to obtain
L′′ = − ẽ

8
F̃T

κλμ
−1F̃κλ . (25)

As before there is no way to express the Lagrangean symmetrically in Aκ and
Ãκ and hence the discrete duality transformation Aκ → Ãκ is an ‘on-shell’
symmetry valid for the equations of motion, but not for the action.
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The fact that a vector field gives rise to another vector field via dual-
ization is clearly special to 4 dimensions. In general a p-form will lead to a
(d− p− 2)-form by dualization. Certain supergravity models [4] for instance
lead to gauge potentials which are 2-forms yielding by dualization a scalar
‘axion’ field in 4 dimensions. In fact, it turns out to be possible to generalize
the structure of the four-dimensional theory we have obtained through the
Kaluza–Klein reduction in a way that allows to include all the known super-
gravity models with abelian gauge fields [12]. Besides the gravitational field
these theories contain scalar fields φ̄i of a non-linear σ-model with a target
space Φ̄ which is assumed to be a non-compact Riemannian symmetric space
Ḡ/H̄. In addition there is a k-dimensional column Aα = (AI

α) (I = 1, . . . , k)
of real vector fields with field strengths Fαβ = ∂αAβ − ∂βAα and their duals
∗Fαβ = 1

2
√

g ε
αβγδFγδ (∗∗F = −F ) satisfying Bianchi identities ∗Fαβ

;α = 0.
The most general gauge invariant action quadratic in the field strengths is

SV =
∫
Σ

√
gdx

(
−1

4
FT

αβ(μ(φ̄)Fαβ − ν(φ̄)∗Fαβ)
)

(26)

where μ = (μIJ) and ν = (νIJ) are real symmetric matrices depending on
the fields φ̄i. This action yields field equations

(μFαβ − ν∗Fαβ);α = 0 (27)

Introducing in the by now familiar way dual potentials Ãα = (ÃαI) we have
obtained 2k vectors

Aα =
(

Aα

Ãα

)
(28)

and field strengths Fαβ = ∂αAβ − ∂βAα satisfying the linear relation

Fαβ = Ȳ M̄∗Fαβ = Ω∗Fαβ (29)

with

Ȳ =
(

0 ηT

−η 0

)
, M̄ =

(
μ + ν μ−1 ν ν μ−1 η−1

(ηT)−1 μ−1 ν (ηT)−1 μ−1 η−1

)
(30)

where η is some real k × k matrix and the symmetric matrix M̄ satisfies
Ȳ M̄ Ȳ = −M̄−1 and hence Ω2 = −1. The case of the coupled Einstein-
Maxwell equations corresponds to putting μ = 1, ν = 0 and Ḡ = H̄ = SO(2).
The equations

∗Fαβ
;α = −(Ȳ M̄Fαβ);α = 0 (31)

can be interpreted as field equations and Bianchi identities for either Fαβ or
∗Fαβ . These equations are Ḡ-invariant under the transformation

Ḡ ! ḡ: Fαβ → ρ̄(ḡ)Fαβ (32)
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provided the real representation ρ̄ satisfies ρ̄(ḡ−1)T = Ȳ −1 ρ̄(ḡ) Ȳ and we can
construct a matrix M̄(φ̄) of the form (30) depending on the scalars φ̄i in such
a way that

Ḡ ! ḡ: M̄(φ̄) → ρ̄(ḡ−1)T M̄(φ̄) ρ̄(ḡ−1) . (33)

The contribution from SV to the stress tensor, which takes a particularly
simple form using the ‘doubled’ field strength F

T (V )

αβ = −FT
αγ μFβ

γ + 1
4gαβ FT

γδ μF γδ

= − 1
2F

T
αγ M̄ F β

γ = − 1
2F

T
αγ Ȳ ∗F β

γ (34)

as well as the contribution to the scalar field equations

δSV

δφ̄i
= −1

4
√

gFT
αβ

( δμ

δφ̄i
Fαβ − δν

δφ̄i
∗Fαβ

)
= −1

8
√

gFT
αβ

δM̄

δφ̄i
Fαβ (35)

will then be explicitly Ḡ-invariant. Since T (V )
00 must be positive for a physically

meaningful theory the matrix M̄ (and hence μ) must be positive definite.
Collecting all the terms in the Lagrangean and the field equations describ-

ing the coupling of the gravitational field gαβ , the vector field strenghts and
their duals comprised in Fαβ and the scalars φ̄i parametrizing M̄ we obtain

L(4) =
√

g
(
−1

2
R(4) +

1
8
gαβ〈M̄−1∂αM̄, M̄−1∂βM〉

−1
4
FT

αβ

(
μ(φ̄)Fαβ − ν(φ̄)∗Fαβ

))
, (36)

Rαβ = −1
2
FT

αγ M̄ F β
γ +

1
4
〈M̄−1∂αM̄, M̄−1∂βM̄〉 , (37)

(M̄ Fαβ);α = 0 , (38)

(M̄−1∂αM̄);α = − 1
2c̄

(
FαβFT

αβM̄
)

pr
(39)

where (. . .)pr denotes a projection on the Lie algebra of G (see Appendix A).

3.3 Reduction to d = 3 Dimensions

In this section we shall see how field configurations of the 4-dimensional
theories discussed above allowing one Killing vector field give rise to a ‘di-
mensionally reduced’ 3-dimensional field theory. Since this reduction can be
performed irrespective of the signature of the KV field, it can be applied to
time-translations or a space-like isometry like axial rotations, but for reasons
of simplicity we shall use the notations for time-translations. In case we want
to explicitly refer to a space-like KV we shall indicate this with a prime on
the corresponding field.
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Since our 4-dimensional models contain gauge fields and scalars besides
the gravitational field, we have to require that the Lie derivative of the field
strengths and of the scalar fields vanish. Then we can and will use a gauge in
which also the Lie derivative of the gauge potentials AI

α vanishes. As before
we choose adapted coordinates such that the isometry is just a translation
(e.g. K = ∂

∂t ). All the fields Fαβ , φ̄i and AI
α will then depend only on the

remaining three coordinates xm (m = 1, 2, 3) parametrizing the orbit space
Σ3 of the action of K. In these coordinates Kα has the form Kα = (Δkm, Δ)
with Δ ≡ K2 and the metric gαβ can be decomposed as (compare eq.(9) for
the 4-bein)

gαβ =
(
− 1

Δhmn + Δkmkn Δkn

Δkm Δ

)
. (40)

We will use the rescaled metric hmn on the three dimensional orbit space
Σ3, since it leads to the standard form of the Lagrangean in 3 dimensions.
In order to do this we have to require Δ �= 0. hmn is positive definite if K
is time-like, i.e. Δ > 0 and has the signature (+−−) if K is space-like, i.e.
Δ < 0. Similarly we decompose the vector fields AI

α = (ÂI
m +kmAI , AI) into

pieces ÂI
m and AI perpendicular and parallel to K. We can now rewrite the

Lagrangean (36) in the form (apart from surface terms)

L̃ =
√

h
(1

2
R(3) − 1

2
hmn

(
〈J̄m, J̄n〉 −

1
Δ

∂mATμ(φ̄)∂nA

+
1

2Δ2 ∂mΔ∂nΔ
)

+
Δ2

8
kmnk

mn (41)

+(F̂mn + kmnA)T
(
−Δ

4
μ(φ̄)(F̂mn + kmnA) +

1
2
√

h
εmnpν(φ̄)∂pA

))
where R(3) is the scalar curvature for hmn, kmn = ∂mkn − ∂nkm, F̂ab =
∂mÂn − ∂nÂm and all indices are raised or lowered with the metric h. The
Killing vector field is hypersurface orthogonal iff kmn = 0.

If the original field configuration was a solution of the 4-dimensional field
equations eqs.(37) then hmn, Δ, km, AI , ÂI

m and φ̄i are a solution of the
three dimensional field equations derived from the action

∫
Σ3

L̃ d3x and vice
versa. The field equations for the 3-dimensional vector fields ÂI

m and km(
−Δμ(φ̄)(F̂mn + kmnA) + 1√

h
εmnpν(φ̄)∂pA

)
;m

= 0 (42)(
Δ2

2 kmn + AT
(
−Δμ(φ̄)(F̂mn + kmnA) + 1√

h
εmnpν(φ̄)∂pA

)
;m

= 0 (43)

can be considered as Bianchi identities for dual potentials ÃI (which are just
the time components KαÃαI of the dual potentials ÃαI) and ψ̃ (the twist
potential).

F̂mn + kmnA =
1√
h
εmnp 1

Δ
μ−1(ν∂pA− η−1∂pÃ) (44)
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kmn =
1√
h
εmnp 1

Δ2 ωp with (45)

∂mψ̃ = ωm − (ÃT(ηT)−1∂mA−ATη−1∂mÃ) . (46)

Putting A = (A, Ã) we can rewrite the twist vector in the explicitly Ḡ-
invariant form

ωm = ∂mψ̃ + ATȲ −1∂mA . (47)

The Lagrangean of the dimensionally reduced three dimensional theory be-
comes

L(3) =
√

h
(

1
2R

(3) − 1
2h

mn
(

1
2Δ2 (∂mΔ∂nΔ + ωmωn)

+〈J̄m, J̄n〉 − 1
Δ∂mATM̄∂nA

))
≡
√

h
(

1
2R

(3) − 1
2h

mn∂mφi∂nφ
jγij(φ)

) (48)

where γij(φ) is a metric on the ‘potential space’ Φ parametrized by φ =
(Δ, ψ̃, A, φ̄). Thus we have obtained a non-linear σ-model with a target
space Φ coupled to (three dimensional) gravity.

For a space-like Killing vector (Δ < 0) the metric on Φ is positive definite,
but for a time like-Killing vector (Δ > 0, stationary solutions) the metric is
indefinite with 2k negative terms due to the fields A originating from the k
vector fields in the 4-dimensional theory.

In terms of the various components the field equations are

R(3)
mn = ∂mφi∂nφ

jγij(φ) , (49a)(
ωm

Δ2

)
;m

= 0 , (49b)(
M̄
Δ ∂mA + Ȳ −1Aωm

Δ2

)
;m

= 0 , (49c)(
∂mΔ

Δ −AT M̄
Δ ∂mA + ψ̃ ωm

Δ2

)
;m

= 0 , (49d)(
1
2M̄

−1∂mM̄ + 1
c̄

(
A∂mAT M̄

Δ − 1
2A

ωm

Δ2 ATȲ −1
)

pr

)
;m

= 0 . (49e)

If all potentials A for the vector fields vanish then ωm = ∂mψ̃ and (Δ,ψ̃)
parametrize the well known SL(2)/SO(2) σ-model of pure gravity [7]. Before
we proceed to the general case let us shortly recall the results about this
simplest case. In order to recognize the metric ds2 = Δ−2(dΔ2 + dψ̃2) as the
invariant metric of SL(2)/SO(2), it is necessary to find a suitable parametri-
sation of the coset space in terms of the coordinates Δ and ψ̃. This can be
done parametrizing suitably selected coset-representatives in the group itself
or using some matrix representation. In the former case we may choose a
basis for the Lie algebra of SL(2) and use the exponential map. A canonical
choice for the Lie algebra of SL(2) consists of the three elements (d, e, k) with
the commutation relations

[d, e] = e, [d, k] = −k, [e, k] = 2d (50)
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The choice
P = e

1
2 lnΔdeψ̃k (51)

may be termed ‘triangular’ in view of a corresponding representation by tri-
angular matrices

P̂ =

(√
Δ 0

ψ̃√
Δ

1√
Δ

)
(52)

It is easily checked that the Killing metric of SL(2) restricted to the
coset space yields the desired expression in terms of Δ and ψ̃. As explained
in Appendix A the group SL(2) acts in a non-linear way on the triangular
representatives. It is easy to check that the Lie algebra is realized on Δ andψ̃
through the infinitesimal transformations

d : δΔ = −Δ, δψ̃ = −ψ̃ (53)
k : δΔ = 0 , δψ̃ = −1 (54)
e : δΔ = 2ψ̃Δ, δψ̃ = ψ̃2 −Δ2 . (55)

Obviously the elements k resp. d correspond to a trivial shift of ψ̃ resp.
a simple rescaling of the KV, whereas the action of e really changes the
solution. The latter is usually referred to as ‘Ehlers’ transformation.

Another convenient parametrization is in terms of the complex ‘Ernst’
potential E = ψ̃ + iΔ undergoing a Möbius transformation under the group
action of SL(2). It is easy to check that the whole group is generated by the
shift E → E+c in combination with the discrete inversion E → 1/E discovered
by Ehlers [6].

Turning back to the general case the metric on the space Φ and the field
equations (49a-49e) are obviously invariant under

• Ḡ-transformations (acting on φ̄ and A),
• ‘electromagnetic’ gauge transformations (with a constant vector a)

ψ̃ → ψ̃ + ATȲ −1a , A → A + a , (56)

• twist gauge transformations

ψ̃ → ψ̃ + b , (57)

• scale transformations

Δ → c2Δ , ψ̃ → c2ψ̃ , A → cA . (58)

It turns out that for many interesting theories (e.g. Einstein-Maxwell, various
supergravities) it is possible to extend the Ehlers transformation to an invari-
ance of the whole target space Φ. Commuting this generalized Ehlers trans-
formation with (infinitesimal) electromagnetic gauge transformations yields
generalized Harrison transformations [9]. The structure of the Lie algebras
corrsponding to this extensions given in Appendix B. Their action on the
scalar potentials is to lowest order (consult [28] for the complete transforma-
tions)
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• (infinitesimal) generalized Ehlers transformations

δΔ = 2ψ̃Δ

δψ̃ = ψ̃2 −Δ2 + c
2A

TM̄AΔ + O(A4)
δφ̄ = O(A2)
δA = (ψ̃ −ΔȲ M̄)A + O(A3) ,

(59)

• (infinitesimal) generalized Harrison transformations

δΔ = −cATȲ aΔ

δψ̃ = c
2A(ΔM̄ − ψ̃Ȳ )a + O(A3)

δφ̄ = O(A)
δA = (ψ̃ −ΔȲ M̄)a + O(A2) .

(60)

The Lie algebra of infinitesimal transformations gives rise to a noncompact
Lie group G with maximal compact subgroup H ′ and depending on the sign
of Δ the target space is either the Riemannian symmetric space Φ′ = G/H ′ or
the pseudo Riemannian symmetric space Φ = G/H, where H is a noncompact
real form of H ′. The dimensions of G and H are

dimG = dim Ḡ+dimSL(2)+4k , dimH = dim H̄+dimSO(2)+2k . (61)

The submanifold where A = 0 (i.e. G/H∩G/H ′) is SL(2)/SO(2)× Ḡ/H̄ and
the generators of the coset space transform under the two dimensional rep-
resentation of SL(2) in order to reproduce the scale transformations eq.(58).
In Appendix A we give a complete list of all combinations of groups G, H, Ḡ
and H̄ corresponding to a time-like KV. For each of them we can start from
the Lagrangean eq.(48) for the three dimensional theory and reconstruct the
Lagrangean eq.(36) of the corresponding 4-dimensional theory.

In order to identify the potentials with suitable coordinates for the coset-
space abstract ‘triangular’ generators may be exponentiated yielding [28]

P = e
1
2 lnΔdeATa+ψ̃k . (62)

Or we proceed in a similar way as we did previously for Ḡ (compare Appendix
A) and choose a (possibly complex) irreducible matrix representation ρ of G
and a hermitian matrix X satisfying ρ(τ(g)) = X−1 ρ(g−1)X and define P̂ =
ρ(P ), M = P̂+ X P̂ = X ρ(M̂). Introducing the currents Jm = 1

2M
−1∂mM

the Lagrangean eq.(48) can be rewritten in the form

L(3) =
√

h
(1

2
R(3) − 1

2
〈Jm, Jm〉

)
≡
√

h
(1

2
R(3) − ĉ

8
hmnTr(M̂−1∂mM̂ M̂−1∂nM̂)

)
(63)

with a constant ĉ depending on the representation ρ and on the particular
σ-model.
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The field equations eqs.(49a-49e) become

R(3)
mn = 〈Jm, Jn〉 (64)

Jm
;m = 0 . (65)

but not all of the conserved currents Jm are independent, since τ(J) =
−MJM−1. An alternative way writing the field equations related to the
triangular representers P is (compare Appendix A)

DαJα = 0 with DαJβ = Jβ;α − [Aα,Jβ ] (66)

In Sect. 5 we will study solutions with asymptotically Euclidean Σ3 and
σ-model fields which have an asymptotic multipole expansion

M(x) ∼
∞∑

n=0

r−nMn(ϑ, ϕ) . (67)

Without loss of generality we can assume that we have the asymptotic values
Δ0 = 1, ψ̃0 = A0 = 0, M̄0 = 1 corresponding to P0 = 1, M0 = 1 or M̂0 = X.
From the asymptotic expansion of M we can read off the ‘gauge’ charges

Q =
1
4π

∫
∞

JmdΣm = −1
2
M1 (68)

taking values in the Lie algebra of G. In fact those in the Lie algebra of H
vanish, due to the relation τ(M) = M−1. The subgroup H ⊂ G leaves the
asymptotic value M0 invariant and transforms the charges according to

H ! h: M1 → hM1 h−1; . (69)

The precise form of this action of H on the charges depends on the particular
σ-model under consideration. There are, however, in all cases, generators of
H which differ from the transformations eqs.(59-60) by suitable multiples of
the transformations eqs.(56-57). These we can use to transform the (electric
and magnetic) vector charges and the NUT charge into the mass and the
scalar charges and vice versa.

3.4 Reduction to d = 2 Dimensions

Stationary, axially symmetric configurations of the 4-dimensional theory are
characterized by their invariance under two commuting Killing vector fields
K = ∂

∂t resp. K ′ = ∂
∂ϕ describing time-translations resp. axial rotations.

Similar to the case of one KV we can perform a ‘dimensional reduction’
from 4 to 2 dimensions. Since we want to make use of the σ-model structure
obtained for the 3-dimensional theory after suitable dualizations we prefer
to employ a two step procedure. First we use one KV field to reduce from
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4 to 3 dimensions and then the second one to do the step to 2 dimensions.
Depending on whether we take the KV K or K ′ to perform the reduction
from 4 to 3 dimensions we end up with two different σ-models corresponding
to G/H resp. G/H ′, parametrized by the matrices M resp. M ′. In the first
case we obtain a pseudo-Riemannian coset space in the second a Riemannian
one, whereas the the opposite holds for the remaining 2-d orbit spaces Σ2.

In order to be able to do the step from 3 to 2 dimensions we first have
to make sure that the Lie derivative of the 3-dimensional fields hmn and M
with respect to the second KV vanishes. For hmn this is a direct consequence
of the commutativity of the two KVs. For the electromagnetic potentials A
we find that their Lie derivative has to be constant. This constant has to
vanish for asymptotically trivial configurations with a regular rotation axis.
In adapted coordinates the vanishing Lie derivative of hmn and M means they
are independent of t and ϕ. Hence the only non-trivial step in the reduction
from 3 to 2 dimensions concerns the decomposition of the 3-metric hab which
we parametrize in analogy to eq.(40) in the form

hmn =
(

λ2h̃kl + ρ2bkbl ρ2bl

ρ2bk ρ2

)
. (70)

In terms of these new fields the Lagrangian (63) becomes

L(2) = ρ
√

h̃
[
−1

2
R̃− ρ2

8λ2 bklb
kl+

c

8
〈M−1∂M,M−1∂M〉−λ−1∂λρ−1∂ρ

]
. (71)

A novel feature for d = 2 is that λ cannot be used to remove the factor
ρ multiplying

√
h̃ in front of the Lagrangian. This is a consequence of the

conformal invariance of the 2-dimensional theory.
A simplification occurs with the vector fields bk which loose their dynam-

ical degrees of freedom in 2 dimensions. From the field equation

(ρ3λ−2bkl);l = 0 (72)

it follows that the dual field strength ∗b = 1

2
√

h̃
εklρ3λ−2bkl obeys the equation

εkl∂l
∗b = 0 (73)

and hence ∗b is constant that vanishes for asymptotically Minkowskian so-
lutions and consequently bkl = 0, i.e. the orbits of the KVs are orthogonal
to 2-surfaces Σ2. This establishes a ‘Generalized Papapetrou Theorem’ [39].
Assuming the vanishing of b in the following L simplifies to

L(2) = ρ
√

h̃
[
−1

2
R̃ +

1
8
〈M−1∂M,M−1∂M〉 − λ−1∂λρ−1∂ρ

]
. (74)

The field equations derived from L(2) are

R̃kl −
1
2
h̃klR̃ = +

1
4
〈M−1∂kM,M−1∂lM〉 − 2λ−1∂(kλρ

−1∂l)ρ
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− 1
2
h̃kl

(1
4
〈M−1∂M,M−1∂M〉 − 2λ−1∂λρ−1∂ρ

)
(75a)

(ρM−1∂kM);k = 0 , (75b)
(∂kρ);k = 0 . (75c)

We have omitted the field equation for λ, because it is a consequence of
eq.(75a) as we will be argued below.

The 2-dimensional metric h̃kl can locally be brought to the conformally
flat form h̃kl = h̃δkl by a suitable choice of coordinates. Finally h̃ can be
absorbed into the conformal factor λ leading to h̃kl = δkl. With this choice
Eq. (75a) turns into a system of first order equations for λ, since the left hand
side vanishes. Since the field equations for M and ρ are conformally invariant
they are independent of λ and hence the same as in flat space. In particular ρ
is a harmonic function on R2. Together with its conjugate harmonic function
z defined by ∂z = −∗∂ρ (note that ∗∗∂ = −∂ in a 2 dimensional space with
definite metric) it provides a canonical coordinatization of the 2-dimensional
reduced manifold as long as ∂ρ �= 0 (Weyl’s canonical coordinates). Eq.(75a)
then becomes

λ−1∂zλ =
ρ

4
〈M−1∂ρM,M−1∂zM〉

λ−1∂ρλ =
ρ

8

(
〈M−1∂ρM,M−1∂ρM〉 − 〈M−1∂zM,M−1∂zM〉

)
. (76)

Using ∂± = ∂z ± i∂ρ with the property ∗∂± = ±i∂± we can write these
equations in the form

∂± lnλ = ∓ iρ

2
〈J±,J±〉. (77)

This equation allows to get λ from M (once the latter has been obtained
solving eq.(75a)) through simple integration.

4 Geroch Group

In [19,20] it was recognized that the equation of motion (75c) for M(x) can be
obtained as the integrability condition of a system of linear differential equa-
tions involving a spectral parameter (‘Lax Pair’) in analogy to well-known
‘Completely Integrable Systems’ like KdV or Sine-Gordon [41]. Although
originally formulated for the Einstein vacuum theory with M ∈ SL(2) the
same construction works for arbitrary symmetric spaces G/H. The linear
system used in [20] can be written as

∂±UU−1 = ± it

1± it
J± (78)

with U(t, x) taking values in G (for real t) resp. some matrix representation
of G. A second, even more useful form of this Linear Spectral Problem (LSP)
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is obtained for P(x, t) ≡ P (x)U(t, x) obeying [21] (compare Appendix A for
the definition of A and J )

∂±P(x, t)P(x, t)−1 = A± +
1∓ it

1± it
J± (LSP) (79)

In order to reproduce the explicit ρ-dependence of the equation for P resp.
M the ‘spectral parameter’ t has to depend on ρ and z. One finds that t(ρ, z)
has to obey the pair of differential equations

∂±t = t
1∓ it

1± it
(80)

implying

∂±

(
z +

ρ

2
(
1
t
− t)

)
= 0 (81)

and thus
z +

ρ

2
(
1
t
− t) = w (82)

(where w is a constant of integration) with the solutions

t±(w, x) =
1
ρ

(
(z − w)±

√
(z − w)2 + ρ2

)
= − 1

t∓
. (83)

The pairs (w, t±) define for each given x = (z, ρ) with ρ �= 0 a two-sheeted
Riemann surface Rx, with the branch points w = z ± iρ. The replacement
t → − 1

t exchanges the two sheets. We can choose the branch cut along the
line segment (z = Rew, ρ ≤ | Imw|). For z < Rew resp. z > Rew the value
of t+ lies inside resp. outside and t− lies outside resp. inside of the unit circle.
For ρ = 0 the Riemann surface degenerates and splits into two disconnected
planes w = z and the function t(w) becomes singular. One finds in particular

t+ −→
ρ→0

{
0
∞ t− −→

ρ→0

{
∞ for z < Rew ,
0 for z > Rew

(84)

Since t depends on x it is important to recognize that ∂P is to be interpreted
as differentiation for fixed w, i.e.

∂±P(t, x) = ∂±P(t, x)
∣∣∣
t
+ ∂±t(w, x)

∂P(t, x)
∂t

(85)

This implies that to any given value of w there will be two solutions P±(w, x)
according to the choice t±(w). Under suitable conditions on P (x) (see below)
P± will however define a single valued function P(t, x) on some domain on Rx.
We still have to supplement the equation for P with a suitable normalization
condition. Since for t = 0 (resp. w = ∞) the r.h.s. of eq.(79) becomes ∂±PP−1

we can impose P(0, x) = P (x). More precisely we shall try to find solutions
P(t, x) having a Taylor series expansion around t = 0 starting with P (x).
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For real t eq.(79) is invariant under the transformation

τ (∞):P(t, x) → τ(P(−1
t
, x)) . (86)

This transformation τ (∞) plays an important group-theoretical role. We may
consider the r.h.s. of eq.(79) as an element of the infinite-dimensional loop
algebra with respect to the Lie algebra of G [40]. Applied to elements of this
Lie algebra τ (∞) is a natural extension of the involutive automorphism τ of G.
Assuming for the moment there is a corresponding infinite-dimensional group
G(∞) (the ‘Geroch group’), the function P(t, x) considered as an element
of that group is again ‘triangular’ in the sense that it has a Taylor series
expansion at t = 0 (i.e. only positive powers of t) and the t-independent term
is triangular.

A central object for completely integrable systems is the ‘Scattering’ or
‘Monodromy’ matrix of the LSP [41]. As a kind of non-linear Fourier trans-
form it encodes the properties of the solution of the non-linear equations
of motion in its dependence on the spectral parameter of the LSP. Usu-
ally this object is obtained through some limiting procedure from special
(‘scattering’) solutions of the equations of motion with specified asymptotic
behaviour. Although it is well known that there are problems with this def-
inition of the Monodromy matrix for non-linear σ-models in flat space, it
was recently shown [2] that the x-dependence of the spectral parameter t
allows to overcome this problem. We will however avoid this problem alto-
gether by a purely ‘algebraic’ definition. Guided by eq.(A.214) we can use
the automorphism τ (∞) to construct

M(t, x) ≡ τ (∞)(P−1(t, x))P(t, x) . (87)

Clearly, in order for this definition to make sense, we have to assume for
the moment that the two factors have an overlapping domain of existence as
functions of t for given x. This is highly non-trivial, since P(t, x) is assumed to
be analytic at t = 0 and thus τ (∞)P(t, x) = τP(−1/t, x) is analytic at t = ∞.
Since P(t, x) and τ(P(−1

t , x)) are solutions of the same linear differential
equation we find, as a consequence, that M(t, x) satisfies ∂±M(t, x) = 0
and thus is independent of x, but may and in fact does depend on w. The
corresponding G-valued function M(w) is our definition of the Monodromy
matrix of the LSP (compare [42] for a similar construction for the KdV
equation).

The inverse transformation (‘Inverse Scattering Transform’) requires the
factorization of M considered as a function of w(t, x) in the form (87). In
order to give this factorization a more precise meaning, we have to determine
the analytical properties of P(t, x). To be specific, let us assume that P (x)
is regular outside some compact region containing possible singularities or
sources. Regularity is here to be understood with respect to the manifold
structure of G as a Lie group or a suitable matrix representation thereof.
Thus let us assume that P (x) is asymptotically regular in the sense that
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• P (x) is analytic in a simply connected domain X in the closure Σ̄2 of Σ2
whose complement X̄ = Σ̄2 \ X is closed and contained in a semi-disk

DR = {(z, ρ): ρ ≥ 0, r ≡
√

z2 + ρ2 < R} (88)

of radius R;
• the configuration is asymptotically flat and sufficiently regular at infinity,

i.e.

P (x) = 1 + O

(
1
r

)
, ∂P (x) = O

(
1
r2

)
. (89)

For a solution to have a physical interpretation one should add further
requirements to those put down in the preceding conditions as e.g. positivity
of the mass or boundary conditions at the horizon for black holes. Note how-
ever that the regularity on the rotation axis is guaranteed by the regularity
of P (x).

Given some asymptotically regular solution P (x) we integrate (79) and
obtain the corresponding functions P±(w, x). We choose the w-dependent
constants of integration in P±(w, x) such that in the limit ρ → 0, z → −∞
(i.e. t+ → 0)

P+(w, x) −→
ρ→0

z→−∞
1 . (90)

Due to the asymptotic behaviour (89) of P (x) we can integrate the differential
equation (79) along a large circle and find

P+(w, x) −→
r→∞ 1 (91)

in the whole asymptotic region. In order to characterize the domain of ana-
lyticity of P(t, x) we need some definitions. Let X be a domain of the type
described in the preceding definition and W the domain in the complex w
plane given by W = {w: (Rew, | Imw|) ∈ X}. For each point x in the (z, ρ)
half plane we define the domains T̄ x

± , T x
± and T x

T̄ x
± = {t: t = t∓(w, x) , w ∈ W̄} , T x

± = C \ T̄ x
± , T x = T x

+ ∩ T x
− .
(92)

where W̄ is the complement of W. The transformation t → − 1
t will clearly

map T x
± onto T x

∓ and will therefore leave their intersection T x invariant.
Furthermore let D± and D be the domains

D± = {(t, x): t ∈ T x
± , x ∈ X} , D = D+ ∩ D− . (93)

Starting from the asymptotic value P+(w, x) −→
r→∞ 1 we can, for a fixed value

of w, determine P+(w, x) by integration of (79) along a suitable path in the
(z, ρ) half plane. The r.h.s. of (79) is analytic (in x and w) for x ∈ X except
for the branch cut starting at x = (Rew, | Imw|). The resulting P+(w, x)
will therefore be an analytic function of w and x as long as we can find a
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path of integration avoiding these singularities. This is possible for all x ∈ X
except those on the branch cut. In order to determine P− we have to reach
the second sheet, i.e. w must lie in the domain W. For the moment we need,
as before, the additional assumption that Imw �= 0 but it is easily seen that
the results remain true for Imw = 0. Except for the branch cut the function
P−(w, x) will be analytic if (w, x) ∈ W × X . We can finally analyze, for
w ∈ W, the behaviour near the branch point for w ∈ W and find

P±(w, x) = P1(w, x) + t±(w, x)P2(w, x) (94)

with P1 and P2 analytic in a neighborhood of the branch point.
Using the analyticity of P±(w, x) and the behaviour (94) near the branch

point we deduce that P(t, x) is an analytic function in the domain D+ and
that P(− 1

t , x) is analytic in D−. M(t, x) will therefore be analytic in D,
but the domain of analyticity is in fact much larger. Since M±(w) is x-
independent it cannot have branch points at w = z ± ρ, i.e. M+(w) =
M−(w) = M(w). M(w) is analytic in W and M(t, x) is therefore analytic
in the domain

D̃ = {(t, x): t ∈ T x} ⊇ D . (95)

Let us now turn to the factorization problem for M. For that reason it is
important to analyze the position of the sets T̄ x

± . As long as z < −R, the
domain T̄ x

+ lies entirely outside the unit circle and to the left of the imaginary
axis whereas T̄ x

− lies inside the unit circle and to the right of the imaginary
axis. For these x all singularities of M(t, x) in T̄ x

+ should be due to P(t, x) and
those in T̄ x

− due to P(− 1
t , x). If we vary x, these domains and the singularities

of P(t, x) will move in the complex t plane and will eventually cross the unit
circle but the two domains T̄ x

± will never intersect as long as z + iρ ∈ W or
equivalently x ∈ X . As soon as z > R, T̄ x

+ lies entirely inside the unit circle
(but still to the left of the imaginary axis) and T̄ x

− lies outside the unit circle.
We can, therefore, choose a family of contours Cx in the t plane which

have, for all x ∈ X , the following properties:

• Cx is invariant under the mapping t → − 1
t and will thus pass through

the two fixed points t = ±i of this map.
• The domain T x contains a neighborhood of Cx and the domains T̄ x

+ resp.
T̄ x

− lie in the exterior resp. interior of Cx.
• The contours Cx depend continously on x.

There remains a lot of ambiguity in the choice of these contours, and we
could e.g. choose the unit circle for z < −R. What we really need is the
existence of a contour which separates the domains T̄ x

± . No such contour can
exist for x ∈ X̄ because, in this case, both T̄ x

+ and T̄ x
− will contain the points

t = ±i and this non-existence of a suitable contour will lead to singularities
of P(t, x).

In view of these properties of the domains of analyticity the factorization
problem maybe considered as a group- or matrix-valued Riemann–Hilbert
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problem for the group-valued function M(t, x) of t for fixed x given in a
neighbourhood of the curve Cx with factors analytic in domains T x

+ resp. T x
−

with the geometrical properties described above. A simple argument shows
[21] that a solution P(t, x) of the factorization problem automatically solves
a LSP of type (79) with suitable currents A(x) and J (x) and thus yields a
solution of the eq.(75a) for M(x).

In general the solution of such a Riemann–Hilbert problem is difficult. A
useful strategy [41,18] is to reduce it to the solution of a system of Fredholm
equations. In the present case there is however a very helpful connection
between M(w) and M(z = w, 0), i.e. M(x) on the axis ρ = 0, derived from
the relations (84).

M(w) =
{

M(w, 0) for w < −R ,
M−1(w, 0) for R < w .

(96)

We see from (96) that although M(w) is x-independent, it contains enough
information to determine the behaviour of M(x), and thus P (x) on the axis
(|z| > R, ρ = 0). Together with the assumed analyticity properties this is in
principle sufficient to determine P (x) everywhere in X . As shown by Ernst
and Hauser [18] the factorisation problem can be explicitly solved along a
suitable piece of the ρ = 0 axis employing eq.(96). From this they are able to
conclude its solvability in the whole domain X .

Next we turn to the definition of the ‘Geroch group’ acting on the solutions
of (75a-75c). Given a solution of the linear equation LSP (79) and a function
g(w) with values in G resp. the complexification of G for complex w we can
obviously get another one by the transformation

P(t, x) → P(t, x)g(w)−1 (97)

where g(w) is considered as a function g(t, x) ≡ g(w(t, x)). The only problem
with this transformation is that in general it destroys the ‘triangularity’ of
P(t, x), since in view of (83) w considered as a function of t is

w = z +
ρ

2
(
1
t
− t) , (98)

which is singular at t = 0. In order to compensate for that one can try to act
from the left with some group element h(t, x) depending on g and P removing
the negative powers of t and bring P (x) = P(0, x) to triangular form. For the
x-independence of M it is necessary to choose h invariant under τ (∞). This
is quite analogous to the standard action of G on the symmetric space G/H
parametrized with the triangular representatives P . In [21] it was shown that
the resulting transformations

P(t, x) → Pg(t, x) ≡ h(t, x)P(t, x)g(w)−1 (99)

correspond exactly to the group proposed by Geroch [14]. The latter emerges
in the attempt to act on the potentials parametrizing the matrix M with
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the group GL(2) mixing the two Killing vector fields K and K ′ linearly.
According to Geroch this requires the introduction of an infinite set of further
potentials – represented here with the ‘generating functions’ U(t, x). The
action of the Geroch group on these functions was derived in [21] using the so-
called Kramer–Neugebauer mapping [43]. Since there is no natural extension
of this mapping to the general class of theories considered in this context
we prefer to postulate the transformations through (99). This requires the
determination of h(t, x), which can however be reduced to the solution of
the factorization problem for M(w): The point is that the transformation of
M(w) corresponding to (99) requires only the knowledge of g(w), because
due to τ (∞)h = h we get

Mg(w) = τg(w)M(w)g(w)−1 . (100)

Hence we can construct Pg making a detour via Mg expressed by the diagram

P →M→Mg → Pg . (101)

Once we have succeeded to factorize Mg(w) as

Mg(t, x)) = τ (∞)
(
Pg(t, x)−1

)
Pg(t, x) (102)

we just define
h ≡ Pg gP−1 . (103)

It is straightforward to show that this h is invariant under τ (∞):

τ (∞)hh−1 = τ (∞)Pgτ
(∞)gτ (∞)P−1 Pg−1P−1

g = τ (∞)Pg Mg P−1
g = 1 .

(104)
Since we are only interested in P(t, x) corresponding to asymptotically regu-
lar solutions P (x) we have to impose the condition that g(w) is holomorphic
in a neighbourhood of w = ∞ (taking values in G for real w) and g(∞) = 1.
In order to give this set the structure of a group we have to form equivalence
classes of g(w)’s related through analytic continuation or equivalently take
the maximal analytic continuation.

As first demonstrated by Ernst and Hauser [18] the Geroch group acts
transitively on the class of stationary, axially symmetric solutions of the vac-
uum Einstein eqs. (G = SL(2)) which are regular in the neighbourhood of
some given point on the axis. This implies in particular that all asymptoically
regular solutions can be obtained from Minkowski space. Since the latter is
represented by M(w) = P(t, x) = 1 this requires the factorisation of M(w)
in the form M(w) = g(w)Tg(w) with g(w) analytic at w = ∞. This can eas-
ily be done explicitely in terms of triangular matrices in the case of SL(2),
but in general no such explicit solution exists. In fact, for pseudo-riemannian
symmetric spaces such a factorisation in ‘triangular’ group elements can only
exist in a neighbourhood of the unit element. Fortunately this is sufficient in
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our case in view of the normalisation condition g(∞) = 1. Thus the transi-
tivity of the Geroch group remains valid for the general class of models under
consideration.

It is sometimes convenient to express the new solution Pg(t, x) as

G(∞) ! g(s): P(t, x) → Pg(t, x) = Zg
+(t, x)P(t, x) (105)

and use a slightly different Riemann–Hilbert problem in order to determine
directly Zg

+(t, x) [44]. Clearly Zg
+(t, x) is analytic in the domain D+ (for

a suitably chosen X ) as are P(t, x) and Pg(t, x). We find that we have to
construct

G(t, x) = P(t, x) g−1(w(t, x))P−1(t, x) (106)
Zg(t, x) = (τ (∞)G(t, x))−1 G(t, x) (107)

and decompose Zg(t, x) in the form

Zg(t, x) = Zg
−(t, x)Zg

+(t, x) (108)

where Zg
±(t, x) is analytic in D± and Zg

+(0, x) = Zg
−(∞, x) is ‘triangular’.

If the function Zg(t, x) in the Riemann–Hilbert problem is meromorphic
(e.g. with 2N poles) then the transformation (105) corresponds to an N -fold
Bäcklund transformation [41] adding N poles to the solution P(t, x) of the
linear system. For a general P(t, x) it is, unfortunately, practically impossible
to find an element g(w) ∈ G(∞) such that the corresponding Zg(t, x) is
meromorphic. One can, however, investigate what are the conditions on a
meromorphic Zg

+(t, x) in order that Pg(t, x) determined by (105) is again a
solution of the LSP. This method yields algebraic equations for the residues
of Zg

+(t, x). This is, in fact, the procedure of Belinskǐı and Zakharov [19]
employed in the special case G = SL(2). For this special case Cosgrove [45]
has shown the equivalence of this method with the Bäcklund transformations
introduced independently by Harrison resp. Kramer and Neugebauer [16,17].

For the full description of the 4-dimensional solution we need also the
conformal factor λ related to P (x) resp. M(x) through (76). The question
arises how λ changes with the transformations P → Pg. In [46] Julia showed
that λ transforms under infinitesimal transformations like a Lie algebra cocy-
cle defining the central extension of the affine Lie algebra. In [21] this action
was ‘exponentiated’ and it was demonstrated that there is a central extension
G

(∞)
ce of G

(∞)
t defined through a group 2-cocycle Ω [47] acting on the pairs

(P, λ) considered again as ‘triangular’ elements of this extended group G
(∞)
ce .

The multiplication law for this central extension of G(∞) using the group
2-cocycle Ω is given by

(a, eα) ◦ (b, eβ) =
(
ab, eα+β+Ω(a,b)

)
. (109)

There is a corresponding extension of the transformation law (99) to

(P, λ−1) →
(
h(P, g), 1

)
◦(P, λ−1)◦(g, eγ)−1 for (g, eγ) ∈ G(∞)

ce . (110)
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Similar to the construction of M from P we can define

(M, μ) ≡ τ (∞)
(
(P, λ−1)−1

)
◦ (P, λ−1) =

(
M, λ−2eΩ(τ(∞)P−1,P)

)
(111)

where the last expression is obtained using (110). Above we concluded that M
was x-independent due to the invariance of ∂PP−1 under τ (∞). The natural
extension of this invariance to G(∞)

ce the Lie algebra of G
(∞)
ce is

∂(P, λ−1) ◦ (P, λ−1)−1 = (∂PP−1, 0) (112)

since τ (∞)Ω = −Ω.
As a consequence of (112) we find ∂μ = 0, i.e. not only M but the whole

pair (M, μ) is x-independent. This remarkable fact provides us with a nice
explicit formula for λ as a function of P

λ2 = c eΩ(τ(∞)P−1,P) (113)

(where the constant c can be determined from the asymptotic behaviour for
|x| → ∞). Making use of the properties of the 2-cocycle Ω it is possible to
show that this expression for λ indeed satisfies (76).

Next we shall demonstrate the factorization of M(w) in a simple example
yielding the Schwarzschild solution. Let us take G = SL(2) and put

M(w) =

(
w−c
w+c 0

0 w+c
w−c

)
. (114)

Factorizing

w − c = − ρ
2t1

(t− t1)( 1
t + t1) with t1 = 1

ρ

(
(z − c) +

√
(z − c)2 + ρ2

)
w + c = − ρ

2t2
(t− t2)( 1

t + t2) with t2 = 1
ρ

(
(z + c) +

√
(z + c)2 + ρ2

)
(115)

allows to separate the poles of M(t, x) in the complex t-plane and to obtain

P(t, x) =

⎛⎜⎝
√

t2
t1

t−t1
t−t2

0

0
√

t1
t2

t−t2
t−t1

⎞⎟⎠ (116)

The corresponding solution of the vacuum field equation is

Δ =
t1
t2

, ψ̃ = 0, λ =
(1 + t1t2)2

(1 + t21)(1 + t22)
(117)

which is nothing but the Schwarzschild solution of mass m = c in Weyl’s
canonical coordinates. These expressions simplify to

Δ =
u− c

u + c
, λ =

u2 − c2

u2 − c2v2 (118)
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using prolate spherical coordinates (u, v)

z = uv , ρ =
√

(u2 − c2)(1− v2) ,
c ≤ u < ∞
−1 ≤ v ≤ 1 (119)

Hence the Schwarzschild solution can be regarded as some kind of soli-
ton obtained through a Bäcklund transformation from the trivial solution
M(w) = 1 using the element

g(w) =

⎛⎜⎝
√

w−m
w+m 0

0
√

w+m
w−m

⎞⎟⎠ (120)

of the Geroch group. The Kerr solution with mass m and angular momentum
J = am is obtained replacing M(w) of eq.(114) by

M(w) =
1

w2 − c2

(
(w + m)2 + a2 a

a (w −m)2 + a2

)
, (121)

where c2 = m2 − a2. Performing again the now rather more complicated
factorisation of M(w) one obtains (ζ = c+a−m

c−a+m )

λ2 =
t2−ζ2t1
t2−t1

t1−ζ2t2
t2−t1

+
(
ζ t1t2−1

t1t2+1

)2

(
1−ζ2

2

)2[(
t2+t1
t2−t1

)2
−

(
t1t2−1
t1t2+1

)2] =
u2 −m2 + (av)2

u2 − (cv)2
,

Δ =
t2−ζ2t1
t2−t1

t1−ζ2t2
t2−t1

+
(
ζ t1t2−1

t1t2+1

)2

(
t2−ζ2t1
t2−t1

)2
+

(
ζ t1t2−1

t1t2+1

)2 =
u2 −m2 + (av)2

(u + m)2 + (av)2
, (122)

ψ̃ = −
(1 + ζ)2ζ t1t2−1

t1t2+1(
t2−ζ2t1
t2−t1

)2
+

(
ζ t1t2−1

t1t2+1

)2 = − 2Jv

(u + m)2 + (av)2
,

By repeated application of such group transformations one can obtain ‘Multi-
Kerr’ solutions first constructed by Kramer and Neugebauer [17] with the help
of Bäcklund transformations. Unfortunately none of these seem to be free of
unphysical singularities [48].

In addition to the transformations of the Geroch group we can define a
non-linear realization of the conformal group of the complex plane (resp. the
Riemann sphere) on the solutions. For any holomorphic function f(w) leaving
the point at infinity fixed we may put Mf (w) ≡ M(f−1(w)) [42]. Again
there corresponds a transformation P → Pf obtained through factorization
of Mf . The infinitesimal form (Virasoro algebra) of these transformations on
the solutions of the Ernst equation was introduced in [49]. More recently Julia
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and Nicolai [50] discussed an extension of the group G(∞)
ce to the semi-direct

product with this conformal group acting on a triple (Y (t, x),P(t, x), λ(x)),
where Y (t, x) is the generating function for a set of potentials generalizing
the function 1/w(t, x).

Finally let us remark that the ‘Inverse Scattering Method’ has also been
successfully applied to solutions with two space-like Killing vectors, describing
gravitational plane waves [22].

5 Stationary Black Holes

The remaining part of this article is devoted to applications of the 3-d σ-
model structure found in the preceding sections. We will concentrate on sta-
tionary space-times which are asymptotically flat (or possibly asymptotically
NUT). In addition we require that the matter fields tend asymptotically to
the ‘classical vacuum’ configuration, i.e. the scalar fields tend to constants
and the vector field strengths to zero. Furthermore we shall assume that the
space-times considered fulfil the standard causality requirements (compare
[51], p. 323 for a precise formulation).

A space-time manifold is said to be stationary if it admits a Killing vector
field K which is time-like near infinity and strictly stationary if K is every-
where time-like. Scalar and vector fields living on a stationary space-time are
called stationary, if their Lie derivative with respect to K vanishes.

A stationary space-time is said to be static, if it is invariant under time-
reflections. This implies that the Killing vector field K is hypersurface or-
thogonal, i.e. the twist vector vanishes.

In order to define staticity for the scalar and vector fields it is necessary
to assign to each field a time reflection parity, such that the action (36) is
time reflection invariant. This assignment is in general not unique. Consider,
e.g., the Einstein-Maxwell system: the electromagnetic field Fαβ is usually
considered as temporal vector field strength F (+), i.e. the magnetic field
Bα = ∗FαβK

β vanishes for a static solution. Due to the duality invariance
of the field equations Fαβ could as well be considered as temporal pseudo
vector field strength F (−) with the consequence that a solution would be
called static if the electric field Eα = FαβK

β vanishes. Actually we prefer
to define staticity in terms of the scalar potentials A, which we split into
temporal scalars A(+) and pseudoscalars A(−). Analogously we proceed with
the scalars of Ḡ/H̄. In view of the σ-model structure we will however make
the additional assumption, that the truncation of G/H to temporal scalars
is a consistent truncation of G/H as defined in Appendix A leading to a
truncated σ-model Gst/Hst.

Let us now turn to the study of stationary solutions of the class of grav-
itational models introduced in the previous chapter. According to a result
of Lichnerowicz [52] there are no non-trivial globally regular stationary solu-
tions of the vacuum Einstein equations – a result that can be generalized to
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the class of theories considered here [12]. From the view-point of harmonic
maps this is not an unexpected phenomenon [24]. This means that interest-
ing stationary solutions have to have singularities. In case the singularities
are hidden behind event horizons we are dealing with black holes, otherwise
the singularities are called naked. From the physical view-point our interest
clearly centers around the first alternative – stationary black holes. In the
following we shall use the σ-model structure to extend in a simple way a
number of classical existence and uniqueness results for these solutions.

The uniqueness theorems on static black holes are usually expressed as
‘No-Hair Theorems’ [26] stating that these black holes are characterized
uniquely by their ‘gauge’ charges – comprising besides the mass only elec-
tric resp. magnetic charges, but no ‘scalar’ charges or charges referring to
global invariances. These ‘gauge’ charges can be read off from the asymptotic
behaviour of the corresponding gauge fields and are related to Gauss-type
conservation laws. Hence we have to discuss the asymptotic conditions for
stationary black holes in terms of the reduced 3-dimensional formulation.
For the Einstein-Maxwell theory this question has been thoroughly investi-
gated by Simon [53]. As mentioned by Simon his results can be extended
to a larger class of theories including those considered here. Accordingly we
require the following asymptotic behaviour at space-like infinity (holding in
a suitable coordinate system) of the fields defined on Σ3:

hab = δab + O(
1
r
) (123)

M = M0 +
1
r
M1 + O(

1
r2 ) (124)

where M0, corresponds to the ‘vacuum’ solution. The behaviour of the indi-
vidual fields (after a suitable choice of gauge) parametrizing M is

Δ = 1− 2m
r

+ O(
1
r2 ) (125)

ψ̃ =
n

r
+ O(

1
r2 ) (126)

A =
QA

r
+ O(

1
r2 ) (127)

M̄ = 1− 2Q̄
r

+ O(
1
r2 ) (128)

where m is the total mass, n is the NUT-charge, QA a vector of ‘electric’
and ‘magnetic’ charges and Q̄ a hermitian matrix of scalar charges. In order
to have an asymptotically Minkowskian geometry the NUT-charge has to
vanish. Thus solutions with non-vanishing NUT-charge are unphysical, nev-
ertheless they appear naturally in our 3-dimensional formalism (their non-
trivial topology becomes only visible if one reconstructs the 4-dimensional
space-time!).
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Next we turn to the event horizon. According to Hawking’s strong rigidity
theorem [51] the event horizon of a stationary black hole is a Killing horizon,
i.e. its null generator L coincides with a Killing vector field. Although there
has been some criticism concerning the strong technical assumptions going
into its proof [54], we shall assume the validity of this theorem here. Now,
either L coincides with the KV K for time-translations or there must exist a
second independent one K ′, which is then necessarily space-like near infinity.
As argued by Hawking it generates axial rotations and correspondingly such
horizons are called rotating. Since its orbits are closed, causality requires that
the axial Killing vector K ′ is space-like on and outside the horizon, apart from
the rotation axis where it vanishes.

For non-rotating horizons the exterior domain is either static or not.
Hawking [51] showed for the vacuum case that strict stationarity of the
exterior domain implies staticity. The generalization of this result to elec-
tromagnetism has been achieved only recently by Sudarsky and Wald [55]. In
contrast to our treatment of stationary solutions based on the 3-d orbit space
these authors prefer a ‘Hamiltonian’ treatment using fields restricted to a 3-
d (maximal) hyper-surface. There is no doubt that the ‘Staticity Theorem’
holds also for the class of models considered here and it should be possible
to extend the proof of [55].

Regardless of whether the horizon is a Killing horizon or not it follows
that on the horizon the energy-momentum tensor satisfies [39]

TαβL
αLβ = 0 . (129)

This implies that

• The scalar fields are constant along the null generators

Lα∂αφ̄i = 0 (130)

• The electric and magnetic fields satisfy

LγFγ[αLβ] = 0 (131)
Lγ∗Fγ[αLβ] = 0 . (132)

If L coincides on the horizon with a KV then the surface gravity κ defined
by

κ =

√
1
2
Lα;βLβ;α (133)

is constant on each connected component of the horizon. Similarly the vector
potentials A are constant there; note however that the scalar fields φ̄ have to
be only finite but not necessarily constant on the horizon.

Let us now consider black holes which are the strictly stationary in their
exterior domain, which includes in particular the static ones and switch to
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the 3-dimensional formulation. The horizon occurs at the boundary of Σ3
where Δ vanishes. The surface gravity of the horizon is given by

κ2 =
1
4
hab∂aΔ∂bΔ (134)

which vanishes only for a degenerate horizon. Moreover, being orthogonal
to the horizon, K satisfies there the hypersurface orthogonality condition
K[α;βKγ] = 0. This implies that ωm vanishes and ψ̃ is constant on each
connected component of the horizon. In addition the geometry determined
by the physical 3-metric Δ−1hmn should remain regular as one approaches
the boundary Δ ↓ 0. If κ �= 0, i.e. for a non-degenerate horizon, this implies
that Δ vanishes as the geodesic distance (in the scaled 3-metric hmn) from
the boundary and that (in suitable coordinates) the same holds true for the
induced 2-metric on the surfaces Δ = const. In terms of the physical 3-
metric the boundary is a totally geodesic 2-surface [57] and each connected
component has the topology of a 2-sphere [58,59].

The boundary conditions in the stationary axisymmetric case are more
complicated because using the adapted coordinates ρ and z introduced in
Sect. 3.4 we must consider the axis as well as the horizon. They are essentially
the same as those discussed by Carter [39] in the Einstein-Maxwell case. The
2-dimensional space is the open half-plane Σ2 = {(z, ρ): ρ > 0}. Both the
horizon and (the exterior part of) the rotation axis are represented by the
the z-axis (ρ = 0). Each connected component of the horizon corresponds to
a segment of the z-axis with Δ′ < 0 whereas Δ′ = 0 on the rotation axis.

The boundary conditions at infinity (r =
√

z2 + ρ2 →∞) are now

λ = 1 + O(
1
r
) (135)

M = M0 +
1
r
M1 + O(

1
r2 ) . (136)

The corresponding behaviour of M ′ is more complicated due to the non-
trivial asymptotic behaviour of the axial Killing vector field and involves the
total angular momentum J . For vanishing NUT-charge one gets

Δ′ = ρ2
(

1 +
2m
r

+ O

(
1
r2

))
(137)

ψ̃′ =
2J(3ρ2z + 2z3)

r3 + O

(
1
r

)
(138)

A′ =
QAz

r
+ O

(
1
r

)
(139)

M̄ ′ = M̄ . (140)

The conditions at the horizon H are simply that M ′ has to attain a finite
limit with Δ′ < 0 there (distinguishing the horizon from the rotation axis
where Δ′ vanishes.
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At the rotation axis Δ′ = ρ2O(1) and M̄ ′ tends to a finite limit quadrat-
ically with ρ. The behaviour of ψ̃′ and A′ can be determined using eqs.(75a-
75c):

A′ = ±QA + a(z)ρ2 + O(ρ4) (141)
ψ̃′ = ±4J ∓QA

TȲ −1a(z)ρ2 + O(ρ4) (142)

with some function a(z) and the signs refering to the upper and lower part
of the axis.

5.1 Spherically Symmetric Solutions

A very important class of solutions of the theories considered in the previ-
ous section are the stationary, spherically symmetric ones. According to the
Birkhoff Theorem spherically symmetric solutions of the vacuum Einstein
resp. the EM equations have a further Killing vector and thus are automati-
cally static if the latter is time-like. But as soon as scalar fields are included
this theorem doesn’t hold anymore. Usually one assumes that the orbits of the
isometry group SO(3) in four dimensions are 2-spheres, implying a vanishing
twist potential ψ̃ [51]. Since we will however use the 3-dimensional reduced
theory, it would be unnecessarily restrictive to make this assumption. Hence
we make this assumption on the orbits only for the 3-dimensional theory
manifold Σ3. Using polar coordinates with some arbitrary radial coordinate
τ the metric can then be parametrized as

ds2 = hmndx
mdxn = N2dτ2 + f(τ)2(dϑ2 + sin2ϑdϕ2). (143)

Substitution of this ansatz into the action (48) resp. (63) and integrating over
the angles yields an effective 1-dimensional Lagrangean

L(1) = N

(
f ′2

N2 + 1− f2

2N2 γij(φ)φi′φj ′
)

(144)

where primes denote derivatives with respect to τ . Varying with respect to
N yields

1− (f ′)2

N2 +
f2

2N2 γijφ
i′φj ′

= 0 (145)

whereas the variation of φ gives

N

f2 (
f2

N
φi′)′ + Γ i

jk(φ)φj ′
φk′

= 0 (146)

With the gauge choice N = f2 this is just the equation for a geodesic of the
target space Φ with τ as the affine parameter. Putting γij(φ̂)dφi

dτ
dφj

dτ = 2v2
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one can integrate eq.(145) for f2 to obtain

f2 = v2 sinh(vτ)−2 for v2 > 0 (147)
f2 = −v2 sin(vτ)−2 for v2 < 0 (148)
f2 = τ−2 for v2 = 0 . (149)

Since for asymptotically flat solutions Δ turns to 1 at infinity the function
f2 tends to r2, where r is the geometrical radius of the 2-spheres. Hence
infinity corresponds to τ = 0. Thus each of the geodesics corresponding to a
solution with the required asymptotic behaviour has to pass through φ0 =
(Δ(0), ψ̃(0), A(0), φ̄(0)) = (1, 0, 0,1) for τ = 0 and is uniquely determined by
its tangent vector φ′(0) there. Using the fact that we are studying geodesics
of a coset space represented by group elements M the geodesics obviously
correspond to 1-parameter subgroups. In terms of M the geodesic equation
is simply

d

dτ

(
M−1 d

dτ
M

)
= 0 (150)

From the asymptotic behaviour we find M−1 d
dτ M = −2Q where Q is the

matrix of global charges lying in the Lie algebra part of G/H. Thus the
geodesics have the form

M = M0e
−2τQ . (151)

Parametrizing the matrix Q of charges one can in principle get explicit ex-
pressions for general spherically symmetric black holes, although in practice
this may turn out quite cumbersome. In the following we shall demonstrate
this on a not completely trivial example, the case of the original Kaluza–Klein
theory yielding the coset space SL(3)/SO(2, 1).

Using the methods described in the Appendix one finds that M̂ has the
parametrization

M̂ = μ− 1
3

⎛⎝Δ−AμA + Δ−1ψ̂2 −Aμ + Δ−1ψ̂Ã Δ−1ψ̂

−μA + Δ−1ψ̂Ã −μ + Δ−1ÃÃ Δ−1Ã

Δ−1ψ̂ Δ−1Ã Δ−1

⎞⎠ (152)

with ψ̂ = ψ̃ + 1
2AÃ. Δ plays the rôle of a gravitational potential, A resp.

Ã are the electric resp. magnetic potential, μ is the scalar field and ψ̃ the
twist-potential.

In this case Q̂ is an element of sl(3) satisfying

Q̂ = −τQ̂ ≡ D−1Q̂TD with D =

⎛⎝1
−1

1

⎞⎠ . (153)

This suggests the ansatz

Q̂ =
1
2

⎛⎝−2m− s − q n
q 2s −p
n p 2m− s

⎞⎠ (154)
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where m is the mass, s the scalar charge, q the electric and p the magnetic
charge and n the NUT-parameter. Since we are only interested in asymptot-
ically Minkowskian solutions we put n = 0.

For black holes Δ has to vanish at the horizon approached for τ → −∞
and the other fields have to stay finite there [12]. This is only possible if the
characteristic equation of Q̂ has the form [56]

Q̂3 − 1
2
(TrQ̂2)Q̂ = 0 (155)

where
TrQ̂2 =

1
2
(4m2 + 3s2 − q2 − p2) = 2v2 . (156)

From (155) we get the additional relation

det Q̂ =
1
8

(
−2s(4m2 − s2) + (2m− s)q2 − (2m + s)p2

)
= 0 . (157)

Solving for q2 and p2 we find

q2 =
(2m + s)

(
(2m + s)2 − 4v2

)
4m

, p2 =
(2m− s)

(
(2m− s)2 − 4v2

)
4m

.

(158)
In order to simplify the discussion we shall study only some special cases in
more detail. For v2 > 0 we put p = 0, i.e. we restrict ourselves to strictly
static solutions lying in GL(2)/SO(1, 1).

Exponentiating the matrix

Q̂ =
1
2

⎛⎝−2m− s − q 0
q 2s 0
0 0 2m− s

⎞⎠ (159)

with the additional relations 2v = 2m− s and q2 = 2s(2m + s) derived from
(156,157) we get

M̂ = M0e
−2τQ̂ = M0

(
1− sinh 2vτ

v
Q̂ +

(cosh 2vτ − 1)
v2 Q̂2

)
(160)

and hence

μ− 1
3 Δ−1 = exp−2vτ (161)

μ
2
3 =

1
2v

(2m + s− 2s exp 2vτ) (162)

μ
2
3 A =

q

2v
(1− exp 2vτ) . (163)

We can rewrite this in the form

μ
2
3 = cosh2 ξ − sinh2 ξ exp 2vτ (164)

μ
2
3 A = cosh ξ sinh ξ(1− exp 2vτ) (165)

with cosh2 ξ =
(1 + s

2m )
(1− s

2m )
. (166)
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This way of writing the solution displays it as a GL(2)-transformed version
of the Schwarzschild solution given by

Δ = exp 2vτ , μ = 1 , A = 0 (167)

with the transformation matrix⎛⎝ cosh ξ sinh ξ 0
sinh ξ cosh ξ 0

0 0 1

⎞⎠ (168)

in SO(1, 1), the stability group of the point M0. As we will show in the
following this possibility to obtain the most general static black hole from
the Schwarzschild solution is in fact a rather general phenomenon.

For v2 = 0 we are not allowed to put p = 0, otherwise we would vio-
late the regularity of the solution on the horizon. On the other hand the
exponentiation of Q̂ becomes particularly simple, since Q̂3 = 0:

M̂ = M0(1− 2τQ̂ + 2τ2Q̂2) (169)

resulting in

Δ =

[
1− s2

4m2(
1− (1− s2

4m2 )σ
)4

− s2

4m2

] 1
2

, (170)

μ =
|q|
|p|

[(
1− (1− s2

4m2 )σ
)2

− s
2m(

1− (1− s2

4m2 )σ
)2

+ s
2m

] 3
2

, (171)

A = −qσ

m

(1− s
2m )

(
1− (1− s

2m )σ
)

(
1− (1− s2

4m2 )σ
)2

− s
2m

, (172)

Ã = −pσ

m

(1 + s
2m )

(
1− (1 + s

2m )σ
)

(
1− (1− s2

4m2 )σ
)2

+ s
2m

, (173)

ψ̃ =
sqpσ2

4m3

(
1− (1− s2

4m2 )σ
)2

− 1(
1− (1− s2

4m2 )σ
)4

− s2

4m2

(174)

where |q| =
√

2m(1+ s
2m )

3
2 , |p| =

√
2m(1− s

2m )
3
2 and σ = mτ . The behaviour

at the horizon τ = −∞ is

Δ =
2

|qp|τ2 + O

(
1
τ3

)
, (175)
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μ =
|q|
|p| + O

(
1
τ

)
, (176)

A =
√

2q
|q| (1 +

s

2m
)− 1

2 + O

(
1
τ

)
, (177)

Ã =
√

2p
|p| (1− s

2m
)− 1

2 + O

(
1
τ

)
, (178)

ψ̃ =
sqp

2m|qp| (1−
s2

4m2 )− 1
2 + O

(
1
τ

)
(179)

characteristic for a degenerate event horizon. Since v2 = 0 the three dimen-
sional space Σ3 is flat for this type of solution. The solution has no strictly
static limit (p = 0), because we have to require pq �= 0.

All the solutions with v2 < 0 have naked singularities [56], hence there are
no black hole solutions in that case. This remains so also for D > 5, where the
behaviour of the geodesics is quite analogous. For light-like geodesics (v2 = 0)
the condition p · q �= 0 is replaced by more general conditions to be derived
in the following.

After this instructive example let us return to the general case for which
we obtain the following equations for the geodesics describing spherically
symmetric black holes

d
dτ

(
Δ−1M̄ dA

dτ

)
= 0 (180)

d
dτ

(
Δ−1 dΔ

dτ −Δ−1ATM̄ dA
dτ

)
= 0 (181)

d
dτ

(
1
2M̄

−1 dM̄
dτ + Δ−1 1

c̄ (AdAT

dτ M̄)pr

)
= 0 . (182)

From the asymptotic behaviour of the geodesics we learn how to fix the
arbitrary constants obtained by integrating these equations.

Δ−1M̄ dA
dτ = −QA (183)

Δ−1 dΔ
dτ −Δ−1ATM̄ dA

dτ = 2m (184)
1
2M̄

−1 dM̄
dτ + Δ−1 1

c̄ (AdAT

dτ M̄)pr = Q̄ . (185)

From eq.(150) we get

1
2
(Δ−1 dΔ

dτ
)2 +

1
4
〈M̄−1 dM̄

dτ
, M̄−1 dM̄

dτ
〉 −Δ−1 dA

T

dτ
M̄

dA

dτ
= 2v2 . (186)

Putting τ = 0 in this equation we obtain the quadratic relation

m2 +
1
2
〈Q̄, Q̄〉 − 1

2
QT

AQA = v2 . (187)

Recently this ‘Quadratic Mass Formula’ has been generalized by Heusler [60]
to arbitrary strictly stationary single black holes of the EM theory and a
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more general model involving a dilaton and an axion. A very simple proof for
all the models considered here is given recently in [28].

Although it seems quite impossible to extract the potentials in closed
form from (151) in the general case it is possible to study the behaviour of
the geodesics qualitatively. We are particularly interested in the asymptotic
behaviour when τ → −∞, where we approach the horizon. We have to recall
the boundary conditions on the horizon

Δ(−∞) = 0 , M̄(−∞) = M̄H < ∞ , A(−∞) = AH < ∞ . (188)

These boundary conditions imply in particular that dM̄
dτ must vanish in the

limit τ → −∞ and we obtain the following relations between the charges and
boundary values at the horizon:

2m−AT
HQA = lim

τ→−∞
d lnΔ

dτ
= 2mH , Q̄ = −1

c̄
(AHQT

A)pr . (189)

There are two essentially different situations:

• mH > 0. This is only possible for v2 > 0, because the negative contribu-
tion in eq.(186) vanishes for Δ → 0. Obviously Δ behaves like

Δ ∼ e2mHτ for τ → −∞ . (190)

Considering A and M̄ as functions of Δ one finds A = AH + O(Δ) and
M̄ = M̄H +O(Δ). The quantity 4πmH is the surface gravity κ times the
area of the horizon.

• mH = 0 describes solutions with a degenerate horizon. Eqs.(180) together
with the boundary conditions eq.(188) show that this is only possible for
v2 = 0. The asymptotic behaviour is, in this case,

Δ ∼ 2
QT

AM̄−1
H QA

τ−2 for τ → −∞ (191)

with A = AH+O(
√

Δ) and M̄ = M̄H+O(Δ). In addition to the relations
eq.(189) there is a series of constraints on M̄ . The coefficients Ck of the
expansion M̄ = M̄H exp

∑∞
k=1 CkΔ

k must satisfy the equations

k(k +
1
2
)(QT

AM̄−1
H QA)Ck −

1
c̄
(ĈkM̄

−1
H QAQT

A)pr = r.h.s. k = 1, 2, . . .

(192)
where the r.h.s. depends only on Cl with l < k and vanishes for k = 1.
This is an inhomogeneous linear system for the Ck. For k large enough
there will be no solutions of the homogeneous system and we can solve
the equations recursively. For small k (and in particular for k = 1) we
must, however, look for solutions of the homogeneous system. A very
simple example of this situation is provided by the extremal solution of
the σ-model with G/H = SL(3)/SO(2, 1) and Ḡ/H̄ = GL(1) discussed
above.
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We may summarize the results of this section stating that stationary
spherically symmetric black hole solutions are characterized by a time-like or
light-like geodesic segment in G/H starting at the point M0 (corresponding
to r = ∞) and running to the boundary Δ = 0. Due to extra constraints on
the scalar charges Q̄ in general not every time-like geodesic leads to a black
hole solution.

5.2 Uniqueness Theorems for Static Black Holes

In the following we consider static (as defined above), non-degenerate single
black hole solutions of eqs.(49a-49e). The term single means that the hori-
zon of the black hole is connected. The claim is that these solutions can
be completely determined in the present setting – being just the spherically
symmetric ones already described above. For pure gravity (no vectors, no
scalars) according to a classical result of Israel [57] a static non-degenerate
single non-degenerate black hole is necessarily spherically symmetric and
thus given by the Schwarzschild solution. Israel’s argument was later im-
proved and simplified by Robinson [61] and Bunting and Masood-ul-Alam
[62] showed that the connectedness of the horizon need not be required, but
follows. This can be interpreted as the impossibilty to bring several black
holes into static equilibrium. Israel was also able to generalize his theorem
to the Einstein-Maxwell theory [63]. In this case his proof consists of two
steps. First he shows that the electric potential A is a function of the gravi-
tational potential Δ and then he proceeds similarly to the case of pure grav-
ity. Note however, that there are static superpositions of degenerate charged
black holes, the Papetrou-Majumdar solutions [64]. Their uniqueness is un-
doubted, but not yet completely established [65]. There exists a simplified
version of Israel’s proof due to Bunting [66]. Making use of the fact that the
matrix of conserved gauge invariant currents Jm = M−1∂mM of the corre-
sponding SO(2, 1)/SO(1, 1) σ-model has a component in the Lie algebra of
H = SO(1, 1), namely JH

m = Δ−1[A∂mΔ+(1−Δ−A2)∂mA], with vanishing
‘charge’

∫
r=∞ JH

mdΣm = 0 he is able to derive that the current JH
m has to

vanish identically, which allows him to express A as a function of Δ. Em-
ploying an adaption of the argument of Robinson permits him to reach the
the desired conclusion. It is an interesting problem to generalize Bunting’s
method to the type of theories including scalars considered here. Another
even simpler possibility could be to generalize Israel’s original method using
the so-called Bach tensor directly making use of eqs.(64). We shall, however,
proceed somewhat differently [12] using an argument put forward in [67]
(compare also [68]). The idea is to transform the vector (electrical) charges
to zero by a suitable Harrison transformation and then to show that the vec-
tor fields vanish identically if they carry no charges. In a second step one
concludes that, once the vector fields vanish, also the scalar fields have to be
trivial, i.e. constant, which may be considered as a kind of scalar ‘No Hair
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Theorem’. This way one displays any charged single static (non-degenerate)
black hole as a Harrison transform of the Schwarzschild solution.

The first step of this strategy is to prove the ‘No Charges - no Vectors
Theorem’ [12]:
For a static single black hole solution of eqs.(49a-49e) with vanshing vector
charges QA = 1

4π

∫
r=∞ ∂mAdΣm = 0 the potentials A vanish identically.

Proof: From eq.(49a-49e) we find

(Δ−1ATM̄∂mA);m = Δ−1∂mATM̄∂mA (193)

and hence through integration∫
H

Δ−1ATM̄∂mAdΣm =
∫

Σ3

Δ−1∂mATM̄∂mAdΣ (194)

(The surface term at infinity vanishes, since the integrand is O(r−3).)
On the other hand∫

H
Δ−1ATM̄∂mAdΣm = AT

H

∫
H

Δ−1M̄∂mAdΣm

= −AT
H

∫
r=∞

Δ−1M̄∂mAdΣm = 0 (195)

due to the boundary conditions on the horizon H and the vanishing of QA.
Since M̄ is a positive matrix we get ∂aA = 0 as claimed and thus A = 0
(being normalized to 0 at infinity).

The second step is to prove the ‘Scalar No Hair Theorem’[12]:
If for a static single black hole solution of eqs.(49a-49e) the vector poten-

tials A vanish, then the scalar fields are constant.
Proof: For vanishing vector potentials A the scalar field equation in (49a-49e)
reduces to

(M̄−1∂mM̄);m = 0 (196)

Integrating we get

Q̄ =
1
8π

∫
r=∞

M̄−1∂mM̄dΣm = 0 (197)

since the contribution at the horizon vanishes because dΣm vanishes like Δ
(compare 40).

On the other hand we can multiply eq.(196) by M̄ and obtain

(∂mM̄);m = ∂mM̄M̄−1∂mM̄ (198)

and again by integration∫
Σ3

∂mM̄M̄−1∂mM̄dΣ =
∫

r=∞
∂mM̄dΣm = 0 (199)
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From the positivity of M̄ we deduce ∂mM̄ = 0 and therefore M̄ = M̄0 = 1.
Remark: As can be seen from the proof the assumption of staticity can be
replaced by the weaker assumption of strict stationarity in this theorem.
Remark: For non-vanishing vector charges QA we obtain from eq.(49a-49e)(

1
2
M̄−1∂mM̄ + Δ−1 1

c

(
A∂mATM̄

)
pr

)
;m

= 0 (200)

yielding a relation between the QA’s and the scalar charges Q̄

Q̄ = −1
c
(AHQT

A)pr . (201)

Combining the two theorems with Israel’s theorem for pure gravity we obtain
the ‘Generalized Israel Theorem’:
Any static single black hole solution of eqs.(49a-49e) with a non-degenerate
horizon is a member of the ‘Schwarzschild family’, i.e. can be obtained from
the Schwarzschild solution through a Harrison transformation and hence is
necessarily spherically symmetric.

As already mentioned the strategy to prove this theorem is to transform
an arbitrary single static black hole solution of eqs.(49a-49e) via a suitable
Harrison transformation into one with vanishing vector charge QA and thus
vanishing A and constant M̄ . In [12] it was claimed that a suitable Harrison
transformation doing the job exists without giving a detailed proof. This will
gap will be hopefully fixed in the final version of [28].

5.3 Stationary, Axially Symmetric Black Holes

The prototype of a stationary, axisymmetric black hole is the Kerr solution,
depending on two parameters, mass and angular momentum. As proved by
Robinson [69], this is, in vacuum, the only such single black hole solution.
Also for the Einstein-Maxwell theory the questions of existence and unique-
ness have a simple, positive answer in the form of the Kerr-Newman solution,
depending on four parameters – mass, angular momentum, electric and mag-
netic charge. The uniqueness of the Kerr-Newman solution has been proven
by Mazur [27] and Bunting [66]. From our experience with the static solutions
we expect the uniqueness problem for our class of more general theories to be
more delicate. In fact, in the static case the charges Q̄ for the scalars cannot
be given freely, but are determined by the vector charges QA. On the other
hand we were able to show that all the static single black holes are members
of the ‘Schwarzschild family’, i.e. could be generated from the Schwarzschild
solution via a suitable Harrison transformation acting on M . It is tempting
to speculate that this situation prevails in the case of rotating black holes, if
we replace Schwarzschild by Kerr.

In order to prove the uniqueness of the solutions with given c = mH (‘ir-
reducible mass’ or size of the horizon), angular momentum J and charges QA
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we shall generalize the the uniqueness theorem of Mazur [27]. As already ob-
served by Mazur himself [70] his theorem can in fact be rather easily extended
to theories of the type considered here, the essential ingredient being the 3-
dimensional σ-model structure for axisymmetric solutions. In contrast to the
uniqueness proofs for static black holes using the G/H σ-model the Mazur
theorem uses the G/H ′ σ-model based on the matrix M ′ instead of M . This
is necessary because only G/H ′ has positive definite metric as required in
the proof of the theorem. Moreover this formulation avoids the singularities
of the matrix M at the ergosurface.

As discussed in Sect. 3.4 we can choose canonical coordinates ρ and z
such that the horizon meets the rotation axis at the two points z = ±c. The
horizon itself is then given by H = {ρ = 0, |z| ≤ c}. The exterior region of the
black hole is the union of the two pieces of the rotation axis {ρ = 0, |z| > c}
with Σ2 = {(z, ρ) : ρ > 0}.

The uniqueness of single stationary rotating black holes is based on the
‘Generalized Mazur Theorem’:
Two solutions M̂ ′

i = (P ′
i )

+P ′
i (i = 1, 2) of the equation (ρ(M̂ ′

i)
−1∂mM̂ ′

i);m =
0 taking their values in the Riemannian symmetric space G/H ′ and obeying
the same boundary conditions for single black holes (i.e. equal values for c,
J and QA) are identical.

Since the proof of this theorem is astonishingly simple in the present
formalism we shall present it here. Putting Ji = 1

2 (M̂ ′
i)

−1∂M̂ ′
i and using

(ρJm);m = 0 and J+
i = M̂ ′

iJi(M̂ ′
i)

−1 we find

1
4

(
ρTr∂m((M̂ ′

1)
−1M̂ ′

2)
)

;m
= 1

2

(
ρTr

(
(M̂ ′

1)
−1M̂ ′

2(J
m
2 − Jm

1 )
))

;m

= ρTr
(
(M̂ ′

1)
−1(Jm

2 − Jm
1 )+M̂ ′

2(J2m − J1m)
)

= ρTr(J +
12mJm

12 ) (202)

with J12 ≡ P ′
2(J2 − J1)(P ′

1)
−1. Integrating this identity over Σ2 and using

TrJi = 0 we obtain∫
Σ2

Tr(J +
12mJm

12 )ρ dρdz

=
∫

∂Σ2

1
2
Tr

(
(M̂ ′

1)
−1M̂ ′

2(J
m
2 − Jm

1 )
)
ρ dΣm

=
∫

∂Σ2

1
2
Tr

((
(P ′

2(P
′
1)

−1)+ − P ′
1(P

′
2)

−1)Jm
12

)
ρ dΣm . (203)

In order to evaluate the boundary term we use the boundary conditions
discussed in the beginning of this section. There is no contribution from the
horizon due to the explicit factor ρ. At infinity one finds P ′

2(P
′
1)

−1 = 1+O( 1
r )

and the normal component of J12 is O( 1
r2 ); hence the boundary term at

infinity vanishes for any two solutions. In order to analyze the contribution
from the axis we need the detailed form of the boundary conditions (compare
eq.(141). For two solutions with the same angular momentum J and vector
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charges QA it follows that both P ′
2(P

′
1)

−1 and J12 stay finite at the axis.
Hence the boundary term at the axis vanishes as well. This implies J12 = 0,
i.e., ∂((M̂ ′

1)
−1M̂ ′

2) = 0 leading to M̂ ′
1 = M̂ ′

2 since (M̂ ′
1)

−1M̂ ′
2 → 1 for r →∞.

Although the parameters m, J , QAq and Q̄ determine the black hole
uniquely they cannot be chosen arbitrarily as the discussion of the spherically
symmetric black holes has already shown. In fact, it appears that the scalar
charges Q̄ are completely fixed through the regularity requirements once the
other parameters have been chosen.

Similarly to the case of static black holes a possible strategy for a unique-
ness proof could be to transform the vector charges to zero by a Harrison
transformation. The problem with that is that the Harrison transformation
acts on M̂ , based on the reduction according to the stationary KV K. This
formulation involving Δ becomes singular at the ergo-surface lying in the
interior of the domain Σ2. The problem now is that we do not know, if the
transformed solution still fulfils all the regularity requirements for a black
hole (Δ′ < 0 and boundary conditions for ρ = 0). In principle this could be
checked, since the action on M̂ ′ can be obtained using the Geroch group.
If this step is successfully done, we can proceed as in the static case and
conclude that the transformed solution solves the vacuum problem and thus
is the Kerr solution. Reversing the argument shows that it is possible (un-
der the provisions made above) to obtain the most general single black hole
solution from the Kerr solution through a suitable Harrison transformation,
establishing a ‘Generalized Robinson Theorem’.
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7 Non-linear σ-Models and Symmetric Spaces

In this appendix we shall study group theoretical aspects of non-linear σ-
models whith a target space Φ which is a non-compact Riemannian or pseudo-
Riemannian symmetric space G/H.

7.1 Non-compact Riemannian Symmetric Spaces

Let G be a non-compact real form of some compact Lie group. There is an
involutive automorphism τ : G → G, τ2 = 1 such that

H =
{
h ∈ G: τ(h) = h

}
(A.204)
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is the maximal compact subgroup of G and the coset space G/H is a non-
compact Riemannian symmetric space [11]. In order to parametrize the coset
space G/H we can choose a group element P as representative for each coset,
i.e. introduce fields P (x)

P : Σ ! x → P (x) ∈ G . (A.205)

Customarily, G/H denotes the space of left cosets gH. For purely historical
reasons we use the space of right cosets which is sometimes denoted by H\G.
As these two spaces are isomorphic we prefer the notation G/H. The choice
eq.(A.205) of representatives is obviously not unique and the freedom to
choose representatives leads to a gauge invariance with gauge group H, in
addition to the group action of G on G/H

P (x) → h(x)P (x)g−1 , h(x) ∈ H , g ∈ G . (A.206)

We can eliminate the gauge group H by choosing one standard represen-
tative for each coset. We will obtain a particularly simple parametrization of
G/H if we choose a solvable subgroup (represented by matrices ‘triangular’
in the sense of the Iwasawa decomposition [11]) which intersects each coset
once. Given such a gauge choice (or any other one) the action (A.206) of a
g ∈ G will lead to non-standard representatives and must therefore be ac-
compagnied by an induced gauge transformation h(P (x), g) ∈ H (depending
in general non-linearly on P and g) in order to maintain the gauge choice

P (x) → h(P (x), g)P (x)g−1 , g ∈ G . (A.207)

In order to construct an invariant metric on G/H we consider the 1-form
dP (x)P (x)−1 with value in the Lie algebra G of G and its decomposition

dP P−1 = A + J = (Aa + Ja)dxa ,
τ(A) = A

τ(J ) = −J .
(A.208)

The transformation laws (induced by eq.(A.206)) for A and J are

A = 1
2 (dP P−1 + τ(dP P−1)) → hAh−1 + dhh−1 (A.209)

J = 1
2 (dP P−1 − τ(dP P−1)) → hJ h−1 , (A.210)

i.e. A can be interpreted as connection for H whereas J transforms H-
covariantly and both are G-invariant. Given any invariant scalar product
〈·, ·〉 on G we can define an invariant metric γ on G/H by

dφidφjγij(φ) ≡ 〈J ,J 〉 . (A.211)

If G is simple any such 〈·, ·〉 is a (positive) multiple of the Killing metric and
for each faithful representation ρ: G ! J → Ĵ ≡ ρ(J ) there is a (positive)
constant ĉ such that

〈J ,J 〉 = ĉTr(Ĵ Ĵ ) . (A.212)
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In case G consists of several simple factors one gets corresponding constants ĉ.
The situation remains essentially unchanged if G contains one abelian factor
but becomes more complicated in the presence of several such factors (U(1)
or SO(1, 1) ∼ R).

Note that the scalar product 〈·, ·〉 on G is indefinite but the metric γ on
G/H is (positive) definite.

Given an r-dimensional faithful representation ρ of G we can project any
r × r matrix T̂ onto G, T̂ → (T̂ )pr, such that for every J ∈ G

〈(T̂ )pr,J 〉 = ĉTr(T̂ Ĵ ) (A.213)

and thus (Ĵ )pr = J . This projection satisfies (ĝT̂ ĝ−1)pr = g(T̂ )prg
−1 for all

g ∈ G [28].
The automorphism τ provides us with a canonical embedding of G/H in

G [71]
P → M = τ(P−1)P , τ(M) = M−1 (A.214)

where M is H-invariant and transforms covariantly under G

M → τ(g)M g−1 , g ∈ G . (A.215)

The corresponding current J = 1
2M

−1dM is related to J by

J = DP P−1 =
1
2
P M−1 dM P−1 ≡ P J P−1 (A.216)

where DP = dP −AP is the H-covariant derivative of P .
The line element eq.(A.211) on G/H can be reexpressed in terms of M

dφidφjγij(φ) =
1
4
〈M−1 dM,M−1 dM〉 (A.217)

Using this expression or the one of eq.(A.211) for the metric in the σ-model
action eq.(12) leads to field equations in the form of conservation equations
for the currents

DαJα = 0 or Jα
;α = 0 or (M−1 ∂αM);α = 0 (A.218)

where DαJβ = Jβ;α− [Aα,Jβ ]. There are dimG currents J and conservation
equations, but clearly only dimG/H of them are independent. In fact, the
currents J obey the identity τ(J) = −MJM−1 due to τ(M) = M−1.

We will choose the basis for a representation ρ such that τ(ĝ) = (ĝ+)−1

for all g ∈ G and thus τ(Ĵ ) = −Ĵ + for all J ∈ G. In such a basis the matrix
M̂ ≡ ρ(M) = P̂+P̂ is hermitian and positive definite.

Note that M and P are very close analogues of the metric and the moving
frame (tetrad) in general relativity. We see that the ‘metric’ M is sufficient
to formulate the σ-model and this remains true if we include vector fields.
Nevertheless the ‘moving frame’ P with a ‘triangular’ gauge choice yields a
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very convenient and simple parametrization of G/H. The situation changes
if we add fermion fields to some of our models (e.g. N = 1 supergravity)
because these fermion fields transform with some representation of H and
not of G. The ‘moving frame’ P is, therefore, necessary in order to describe
these fermions.

7.2 Pseudo-Riemannian Symmetric Spaces

The situation becomes slightly more complicated if we consider a pseudo-
Riemannian symmetric space G/H [72]. In this case we have a non-compact
Lie group G and an involutive automorphism τ which defines the subgroup
H of G as before. In addition there is a different involutive automorphism τ ′

commuting with τ (ττ ′ = τ ′τ = τ ′′) which determines the maximal compact
subgroup H ′ of G

H ′ =
{
h ∈ G: τ ′(h) = h

}
. (A.219)

In contrast to the case before the parametrisation with ‘triangular’ P ’s is
now no more possible globally due to the fact that some compact generators
are remaining in G/H. Thus this parametrisation will be singular for certain
points (e.g. there may be regular points of G/H with Δ = 0). The basis
for a representation ρ will be chosen such that τ(ĝ) = X̂−1(ĝ+)−1X̂ with a
hermitian matrix X̂. If we define M̂ ≡ X̂ρ(M) = P̂+X̂P̂ the matrix M̂ will
again be hermitian. Due to the non-compactness of H the matrix X̂ and thus
M̂ and the metric γ will, however, not be positive definite.

7.3 Consistent Truncations

Given a non-linear σ-model with target space Φ and metric γ we may be
interested to study a truncated σ-model with target space Φ̃ ⊂ Φ and the
induced metric γ̃ = γ|Φ̃.

We say that a non-linear σ-model with target space Φ̃ is a consistent
truncation of another σ-model with target space Φ if Φ̃ ⊂ Φ and if every
solution of the field equations for the Φ̃ σ-model is a solution of the field
equations for the Φ σ-model as well.

This is the case iff Φ̃ is a totally geodesic subspace of Φ.
If Φ is a Riemannian symmetric space G/H then every totally geodesic

subspace of Φ is again a Riemannian symmetric space G̃/H̃ [11]. The auto-
morphism τ maps the subgroup G̃ ⊂ G onto itself, τ̃ = τ |G̃ and therefore
H ∩ G̃ = H̃ ⊂ H. Similar statements hold true if Φ is a pseudo-Riemannian
symmetric space.

8 Structure of the Lie Algebra

We shall now describe in some detail the structure of the Lie algebras of the
groups G corresponding to the theories discussed in this work [28]. Due to
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Table 1. List of all symmetric spaces obtained by dimensional reduction from four
to three dimensions of theories with scalars and vectors (reproduced from Table 2
in [12]).

# G/H Ḡ/H̄ dim Ḡ/H̄ k

1 SL(n + 2)/SO(n, 2) GL(n)/SO(n)
n(n + 1)

2
n

2
SU(p + 1, q + 1)

S(U(p, 1) × U(1, q)
U(p, q)/(U(p) × U(q)) 2pq p + q

3
SO(p + 2, q + 2)

SO(p, 2) × SO(2, q)
SO(p, q)

SO(p) × SO(q)
× SO(2, 1)

SO(2)
pq + 2 p + q

4 SO∗(2n + 4)/U(n, 2)
SO∗(2n)

U(n)
× SU(2)

SU(2)
n(n − 1) 2n

5 Sp(2n + 2;R)/U(n, 1) Sp(2n;R)/U(n) n(n + 1) n

6
G2(+2)

SU(1, 1) × SU(1, 1)
SU(1, 1)/U(1) 2 2

7
F4(+4)

Sp(6;R) × SU(1, 1)
Sp(6;R)/U(3) 12 7

8 E6(+6)/Sp(8;R) SL(6)/SO(6) 20 10

9
E6(−2)

SU(3, 3) × SU(1, 1)
SU(3, 3)

S(U(3) × U(3))
18 10

10
E6(−14)

SO∗(10) × SO(2)
SU(5, 1)/U(5) 10 10

11 E7(+7)/SU(4, 4)
SO(6, 6)

SO(6) × SO(6)
36 16

12
E7(−5)

SO∗(12) × SO(2, 1)
SO∗(12)/U(6) 30 16

13
E7(−25)

E6(−14) × SO(2)
SO(10, 2)

SO(10) × SO(2)
20 16

14 E7(+8)/SO∗(16) E7(+7)/SU(8) 70 28

15
E8(−24)

E7(−25) × SU(1, 1)
E7(−25)

E6(−78) × SO(2)
54 28

the possibilities to use a space-like resp. a time-like Killing vector for the
reduction from 4 to 3 dimensions the coset spaces G/H are characterized by
two commuting involutive automorphisms τ and τ ′: All elements of G that are
invariant under τ form the subgroup H, all elements invariant under τ ′ form
the subgroup H ′, and all elements invariant under ττ ′ form the subgroup
Ḡ ⊗ SL(2). The restriction of τ or τ ′ to Ḡ is the original automorphism τ̄ ;
the restriction to SL(2) is the automorphism defining the maximal compact
subgroup SO(2). We may assume that the representation ρ̄ of Ḡ is faithful,
i.e., that all scalars of the 4-dimensional Ḡ/H̄ σ-model couple to vector fields.



Duality and Hidden Symmetries 321

The group G will then be simple, and Table 1 reproduction of Table 2 in [12])
lists all possible cases. We choose a basis ti for the Lie algebra sl(2), where
t+ = e, t0 = d and t− = k satisfy the commutation relations

[d, e] = e , [d, k] = −k , [e, k] = 2d (B.220)

and
τ(e) = −k , τ(d) = −d , τ(k) = −e . (B.221)

In addition we have the generators si of ḡ and additional generators hi,
ai, i = 1, . . . , 2k for Harrison resp. gauge transformations, which must form
doublets under SL(2) in order to reproduce the scale transformations eq.(58).

[d, hi] = 1
2hi , [e, hi] = 0 , [k, hi] = −ai ,

[d, ai] = − 1
2ai , [e, ai] = −hi , [k, ai] = 0 ,

(B.222)

and with a 2k-dimensional real matrix representation ρ̄ of ḡ

ρ̄ : si �→ ρ̄(si) = Ri , [si, h · α] = h ·Riα , [si, a · α] = a ·Riα . (B.223)

The remaining commutators can be determined from the Jacobi identities
J(x, y, z) ≡ [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0:

J(h · α, h · β, d) ⇒ [h · α, h · β] = α · yβ e ,
J(h · α, h · β, k) ⇒ [h · α, a · β] = α · yβ d + α · xlβ sl ,
J(h · α, a · β, k) ⇒ [a · α, a · β] = −α · yβ k ,

(B.224)

with numerical matrices yT = −y and xlT = xl obeying

yRi + RT
i y = 0 , xlRi + RT

i xl = fij
lxj ,

1
2α (β · yγ) + Rlα (β · xlγ)− (α ↔ β) = γ (α · yβ) .

(B.225)

The trace of this ‘Completeness relation’ yields

xlRl − (xlRl)T + (2k + 1)y = 0 . (B.226)

The explicit form of the matrices appearing in these commutation relations
can be found in [28] for the various coset spaces of Table 1.
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stein’schen Gravitationsgleichungen, Dissertation, Hamburg, 1957.
7. Neugebauer, G. and Kramer, D.: Ann. d. Physik 24 (1969) 62,

Geroch, R.: J. Math. Phys. 12 (1971) 918.
8. Kinnersley, W.: J. Math. Phys. 14 (1973) 651.
9. Harrison, B.K.: J. Math. Phys. 9 (1968) 1744.
10. Julia B. in:Superspace and Supergravity, ed. Hawking, S. and Rocek, M., Cam-

bridge Univ. Press (1981).
11. Helgason, S.: Differential Geometry and Symmetric Spaces, Academic, New

York, 1962.
Kobayashi, S. and Nomizu, K.; Foundations of Differential Geometry, Inter-
science, New York, 1969.

12. Breitenlohner, P., Gibbons, G. and Maison, D.: Commun. Math. Phys. 120
(1988) 295.

13. deWit, B. and Nicolai, H.: Nucl. Phys. B 274 (1986) 363.
14. Geroch, R.: J. Math. Phys. 13 (1972) 394.
15. Hoenselaers, C., Kinnersley, W. and Xanthopoulos, B.: J. Math. Phys. 20

(1979) 2530.
16. Harrison, B.K.: Phys. Rev. Lett. 41 (1978) 1197.
17. Kramer, D. and Neugebauer, G.: Phys. Lett. A 75 (1980) 259.
18. Hauser, I. and Ernst, F.J.: J. Math. Phys. 22 (1981) 1051.
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22. Li, W., Hauser, I. and Ernst, F.J.: J. Math. Phys. 32 (1991) 723

Hauser, I. and Ernst, F.J.: gr-qc/9303021
23. Nicolai, H.: Phys. Lett. B 194 (1987) 402.
24. Eells, J. Jr. and Sampson, J.H.: Am. J. Math. 86 (1964) 109,

Eells, J. and Lemaire, L.: Bull. London Math. Soc. 10 (1978) 1.
25. Misner, C.W.: Phys. Rev. D 18 (1978) 4510.
26. Heusler, M.: Black hole uniqueness theorems. Cambridge Univ. Press, Cam-

bridge, 1996.
27. Mazur, P.O.:J. Phys. A 15 (1982) 3173.
28. Breitenlohner, P. and Maison, D.: On Nonlinear σ-Models arising in (Super-)

Gravity.
gr-qc/9806002, to appear in Commun. Math. Phys.

29. Olive, D.: Nucl. Phys. Proc. Suppl.45A (1996) 88;
Nucl. Phys. Proc. Suppl.46 (1996) 1.

30. Cremmer, E. and Julia, B.: Nucl. Phys. B 159 (1979) 141.
31. Wu, T.T. and Yang, C.N.: Phys. Rev. D 12 (1975) 3845.
32. Schwinger, J.: Science165 (1969) 757.
33. Zwanziger, D.: Phys. Rev. 176 (1968) 1489.
34. Deser, S. and Teitelboim, C.: Phys. Rev. D 13 (1976) 1592.
35. Montonen, and Olive,D.: Phys. Lett. B 72 (1977) 117.
36. Seiberg, N. and Witten, E.: Nucl. Phys. B 426 (1994) 19.
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1 Introduction

In this article we want to describe what is known about time independent
spacetimes from a global point of view. The physical situations we want
to treat are isolated bodies at rest or in uniform rotation in an otherwise
empty universe. In such cases one expects the gravitational field to have
no “independent degrees of freedom”. Very loosely speaking, the spacetime
geometry should be uniquely determined by the matter content of the model
under consideration. In a similar way, for a given matter model (such as
that of a perfect fluid), there should be a one-to-one correspondence between
Newtonian solutions and general relativistic ones.

The plan of this paper is as follows. In Sect. 2.1 we collect the information
afforded on one hand by the Killing equation obeyed by the vector field gen-
erating the stationary isometry and, on the other hand, that by the Einstein
field equations. Throughout this paper we assume this stationary isometry
to be everywhere timelike. Thus ergoregions are excluded. We try as much
as possible to write the resulting equations in terms of objects intrinsic to
the space (henceforth simply called “the quotient space”) obtained by quo-
tienting spacetime by the action of the stationary isometry. Much of this is
standard. But since none of the references known to us meets our specific
purposes, we give a self-contained treatment starting from scratch. Since all
the models we treat are axially symmetric, we add in Sect. 2.2 a second, axial
Killing vector to the formalism of Sect. 2.1.

In Sect. 2.3 we first introduce new dependent variables for the vacuum
gravitational field, namely a conformally rescaled metric on the quotient space
and two potentials, using which the field equations have an interpretation
in terms of harmonic maps from the quotient space into the Poincaré half
plane. These potentials, originally due to Hansen, are used in our treatment
of asymptotics in Sects. 3.1,2. We then formulate the boundary conditions at
spatial infinity appropriate for isolated systems and prove two basic theorems
due to Lichnerowicz on stationary solutions obeying these conditions. These
theorems are manifestations of the above-mentioned principle concerning the
lack of gravitational degrees of freedom. The first result, the “staticity theo-
rem”, basically states that the gravitational field is static when the matter is

B.G. Schmidt (Ed.): LNP 540, pp. 325−372, 1999.
© Springer-Verlag Berlin Heidelberg 1999
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non-rotating. The second one, the “vacuum theorem”, states that spacetime
is Minkowski when no matter is present. In Sect. 2.4 we restore c, the velocity
of light, in the field equations and show that these tend to the Newtonian
ones as c →∞.

In Chap. 3 we we study solutions only “near infinity”. (Note that by
the Lichnerowicz vacuum theorem, such solutions can not be extended to
all of R4 exept for flat spacetime.) In the Newtonian case such solutions
are known to have a convergent expansion in negative powers of the radius
where the coefficients are given by multipole moments. The relativistic situ-
ation is slightly at variance with our statement at the beginning concerning
the Newton–Einstein correspondence: namely, there are now, corresponding
to the presence of two potentials rather than one, two infinite sequences of
multipole moments, the “mass moments” which have a Newtonian analogue
and the “angular momentum moments” which do not. One may now study
the two potentials and the rescaled quotient space metric in increasing pow-
ers of 1/r, where r is the radius corresponding to a specific coordinate gauge
on the quotient space which has to be readjusted at each order in 1/r.

The results one finds are sufficient for the existence of a chart in the one-
point “compactification” of the quotient space (i.e. the union of the quotient
space and the point-at-infinity), in terms of which yet another conformal
rescaling of the 3-metric, together with a corresponding rescaling of the two
potentials, admit regular extensions to the compactified space. As summa-
rized in Sect. 3.2 one is then able to find field equations for these “unphysi-
cal” variables which are regular at the point-at-infinity and in addition can be
turned into an elliptic system. From this it follows that the unphysical quanti-
ties are in fact analytic near infinity and this, in turn, implies convergence for
a suitable 1/r-expansion (r being a “physical” radius) for the original phys-
ical variables. Furthermore the structure of the unphysical equations yields
the result that the (physical) spacetime metric is uniquely characterized by
the two sets of multipole moments.

It is remarkable that stationary vacuum solutions satisfying rather weak
fall-off conditions at spatial infinity, by the very nature of the field equations,
have to have a convergent multipole expansion. We believe that the topic of
far-field behaviour of time-independent gravitational fields is by now reason-
ably well understood. The main open problem is to characterize an a priori
given sequence of multipole moments for which the expansion converges.

In Chap. 4 we review global rotating solutions. In Sect. 4.1 we outline
a result due to Lindblom which shows that stationary rotating spacetimes
with a one-component fluid source with phenomenological heat conduction
and viscosity have to be axisymmetric. In Sect. 4.2 we describe a theorem of
Heilig which proves the existence of axisymmetric, rigidly rotating perfect-
fluid spacetimes with polytropic equation of state, provided the parameters
are sufficiently close to ones for a nonrotating Newtonian solution. In Sect. 4.3
we present the solution of Neugebauer and Meinel representing a rigidly rotat-
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ing infinitely thin disk of dust. In the final chapter we treat global nonrotating
solutions.

In Sect. 5.1 we outline the essentials of a relativistic theory of static elastic
bodies. The remaining sections are devoted to spherical symmetry. It has
long been conjectured that nonrotating perfect fluids are spherical whence
Schwarzschild in their exterior region. In Sect. 5.2 we discuss the present
status of this conjecture. A proof exists when the allowed equations of state
are limited by a certain inequality. While this inequality covers many cases
of physical interest, the Newtonian situation suggests that the conjecture
is probably true without this restriction. In Sect. 5.3 we review spherically
symmetric perfect fluid solutions. The final Sect. 5.4 gives a short description
of self-gravitating Vlasov matter in the sperically symmetric case.

In the subject of time-independent gravitational field of isolated bodies
there are some topics we do not cover. We do not address the question of
the conjectured non-existence of solutions with more than one body. (Müller
zum Hagen [58] has some results on this in the static case.) Furthermore
we limit ourselves to “standard matter” sources. Thus Black Holes are ex-
cluded. (For this see the article of Maison in this volume.) We also could
not cover the interesting case of soliton-like solutions for “non-linear matter
sources”, starting with the discovery of the Bartnik–McKinnon solutions of
the Einstein–Yang Mills system (see Bizon [11].)

Acknowledgements

Part of this work was carried out at the Institute for Theoretical Physics at
Santa Barbara, where the authors took part in the program on ”Classical and
Quantum Physics of Strong Gravitational Fields”. We thank the ITP for its
support and kind hospitality. R. Beig was in part supported by “Fonds zur
Förderung der wissenschaftlichen Forschung in Österreich”, project P12626-
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2 Field Equations

2.1 Generalities

Let (M, gμν) be a 4-dimensional smooth connected manifold with Lorentz
metric gμν of signature (− + ++). We assume M to be chronological, i.e.
to admit no closed timelike curves. Let ξμ be an everywhere timelike Killing
vector field with complete orbits. Thus we do not allow points where ξμ turns
null, i.e. we exclude horizons and ergospheres. It follows (see [26]) that the
quotient of M by the isometry group generated by ξμ is a Hausdorff manifold
N and that M is a principal R1-bundle over N . Furthermore this bundle is
trivial, i.e. M is diffeomorphic to R1 ×N . The fact that this diffeomorphism
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is non-natural (whereas of course the projection π mapping M onto N is)
plays a role in the formalism we shall now develop.

Let us introduce the differential geometric machinery necessary for writing
the stationary Einstein equations in a way naturally adapted to ξμ. As far
as possible, we will be interested in quantities and equations intrinsic to N
(“dimensional reduction”). For a similar treatment see the Appendix of [23].
We define the fields V and ωλνλ = ω[μνλ] by

V := ξμξ
μ ⇒ V < 0 (2.1)

ωμνλ := 3ξ[μ∇νξλ]. (2.2)

The 3-form ωμνλ vanishes if and only if ξμ is hypersurface orthogonal – in
which case (M, gμν) is called static. More important than ωμνλ will be the
2-form σμν , given by

σμν := ωμνλξ
λ. (2.3)

Given ξμ, the fields σμν and ωμνλ carry the same information, since

ωμνλ = 3V −1ξ[μσνλ]. (2.4)

Equation (2.4) is obtained by expanding the identity ξ[μωνλρ] = 0, which
follows from (2.2), and contracting with ξμ. In a similar way we obtain the
relations

ωμνλω
μνλ = 3V −1σμνσ

μν (2.5)

ωμνλσ
νλ =

1
3
ωρνλω

ρνλξμ. (2.6)

We now invoke the Killing equation for ξμ, i.e.

Lξgμν = ∇μξν +∇νξμ = 0. (2.7)

Expanding ωμνλ in terms of ξμ, we easily see that

∇μξν = V −1[σμν + (∇[μV )ξν]], (2.8)

or, equivalently,
σμν = V 2∇[μ(V −1ξν]). (2.9)

In the static case we have σμν = 0, whence there exist global cross sections
given by t = const, where ξμ = V∇μt.

Equation (2.9) implies that

∇[μ(V −2σνλ]) = 0. (2.10)

Clearly we have Lξτ = 0, where τ is the 3-form given by τμνλ = V −2ωμνλ.
By (2.10) and the identity Lξ = ξ%dτ + d(ξ%τ), this implies ξ%dτ = 0. Since
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dτ is a 4-form and ξμ is nowhere zero, we infer in 4 dimensions that dτ is
zero, i.e.

∇[μ(V −2ωνλρ]) = 0. (2.11)

Equations (2.10,11) are integrability conditions for the Killing equations (2.7)
which are “purely geometric” in that they do not involve the Ricci (whence:
energy-momentum) tensor. Now recall the relation

∇μ∇νξλ = −Rνλμ
ρξρ, (2.12)

which follows from (2.7) and its corollary

gνρ∇ν∇ρξμ = −Rμ
νξν . (2.13)

From (2.2), (2.7) and (2.13) we find that

∇μωμνλ = 2ξ[νRλ]μξ
μ, (2.14)

which, using (2.8), implies

∇μ(V −1σμν) = 2V −1ξ[νRλ]μξ
μξλ − V −3σμλσ

μλξν , (2.15)

where we have also used (2.6,7). Interpreting Gμν = Rμν − 1
2gμνR as the

energy-momentum tensor of matter, the r.h. side of (2.14) is zero iff the
matter current, for an observer at rest relative to ξμ, is zero. In that case,
and provided that M is simply connected, there exists a scalar field ω, called
twist potential, such that

ωμνλ =
1
2
εμνλ

ρ∇ρω, (2.16)

and then (2.11) implies
∇μ(V −2∇μω) = 0. (2.17)

Note that, by virtue of ξ[μωνλρ] = 0, ω satisfies Lξω = 0.
Next, using the definition (2.1) and eq. (2.8), it is straightforward to show

that

∇μ∇νV = −2Rμλνρξ
λξρ + 2V −2[σμλσν

λ − (∇λV )ξ(μσν)λ

+
1
4
V∇μV∇νV +

1
4
ξμξν(∇V )2] (2.18)

and whence

∇μ∇μV = −2Rμνξ
μξν + V −1(∇V )2 + 2V −2σμνσ

μν . (2.19)

Now recall (see e.g. the Appendix of [23]) that there is a 1−1 correspondence
between tensor fields on M with vanishing Lie derivative with respect to ξμ

and such that all their contractions with ξμ and ξμ are zero – and ones
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of the same type on N . In the case of covariant tensor fields on N , this
correspondence is the same as pull-back under π. Examples of such tensor
fields on M are the scalar field V , the symmetric tensor field

hμν := gμν − V −1ξμξν (2.20)

and the 2-form σμν = ωμνλξ
λ. Note that σμν can also be written as

σμν = V hμ
μ′
hν

ν′∇μ′ξν′ . (2.21)

The tensor hμν is, of course, the natural Riemannian metric on N . The co-
variant derivative Dμ associated with hμν acting, say, on a covector Xμ living
on N , is given by

DμXν = hμ
μ′
hν

ν′∇μ′Xν′ . (2.22)

Denoting by Rμνλσ the curvature associated with Dμ, we find, using (2.9),
that

Rμνλσ = hμ
μ′
hν

ν′
hλ

λ′
hσ

σ′
Rμ′ν′λ′σ′ +2V −3σμνσλρ−V −3(σλ[μσν]ρ−σρ[μσν]λ).

(2.23)
Since N is 3-dimensional, there holds

σμ[νσλρ] = 0, (2.24)

so that
Rμνλρ = hμ

μ′
hν

ν′
hλ

λ′
hρ

ρ′
Rμ′ν′λ′ρ′ + 3V −3σμνσλρ. (2.25)

Thus

Rμν = hμ
μ′
hν

ν′
Rμ′ν′ − V −1Rμν′λρ′ξν′

ξρ′
+ 3V −3σμλσν

λ. (2.26)

Using (2.18), (2.26) finally leads to

Rμν = hμ
μ′
hν

ν′
Rμ′ν′ +

1
2
V −1DμDνV + 2V −3σμλσν

λ − 1
4
V −2(DμV )(DνV ).

(2.27)
From (2.19) we deduce that

D2V := hμνDμDνV = −2Rμνξ
μξν +

1
2
V −1(DV )2 + 2V −2σμνσ

μν . (2.28)

We now make the following observation: when τμ...λ is an arbitrary tensor on
N , there holds

hν
ν′

. . . hλ
λ′∇μτμν′...λ′ = (−V )−1/2Dμ[(−V )1/2τμν...λ]. (2.29)

Applying (2.29) to (2.15) it follows that

(−V )−1/2Dμ[(−V )1/2σμν ] = hν
ν′
Rν′μξ

μ. (2.30)
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Finally, projecting (2.10) down to N , it follows that

D[μ(V −2σνρ]) = 0. (2.31)

Given the spacetime (M, gμν) with the Killing vector ξμ, under the con-
ditions stated at the beginning of this section, there are coordinates (t, xi)
on M , such that the canonical projection π takes the form π : (t, xi) �→ (xi),
with xi local coordinates on N and such that the Killing vector ξμ takes the
form ξ = ∂/∂t. In terms of such coordinates tensor fields on N , say τi...j(x),
can be viewed as the tensor fields

τμ...ν(t, x) = δμ
i . . . δν

jτi...j(x). (2.32)

Since ξμξ
μ = V , there holds

ξμdx
μ = V (dt + ϕidx

i), (2.33)

for some 1-form ϕi. Note that, in the tangent space at each point (t, xi) ∈ M ,
the gμν-orthogonal complement of ξμ is spanned by ϕi∂/∂t + ∂/∂xi and the
orthogonal complement of ξμ in the cotangent space is spanned by dxi. From
the definition hμν = gμν − V −1ξμξν it follows that

gμνdx
μdxν = V (dt + ϕidx

i)2 + hijdx
idxj , (2.34)

where V , ϕi, hij on the r.h. side of (2.34) are all independent of t. It is now
straightforward to check that

σμνdx
μdxν = 3(ξ[μ∇νξλ])dxμdxν = V 2∂[iϕj]dx

idxj . (2.35)

Thus σμν , viewed as a tensor on N , is given by

σij = V 2∂[iϕj]. (2.36)

In the static case t can be chosen so that ϕi = 0.
Conversely, let us start from the 3-manifold (N,hij , V, σij) with Rieman-

nian metric hij , a negative scalar field V and the 2-form σij , subject to

D[i(V −2σjk]) = 0, (2.37)

which corresponds to (2.31). Suppose, moreover, that N has trivial second
cohomology. Then there exists a covector ϕi on N with

σij = V 2D[iϕj]. (2.38)

Define M = {t ∈ R}×N and define on N the Lorentz metric gμν by (2.34) and
ξμ by ξ = ∂/∂t. Then one checks that ξμξ

μ = V , that, under the projection
π : M → N , hμν is the pull-back of hij and that σμν is the pull-back of
σij = V 2D[iϕj]. The fact that the product structure of M as M = R1 ×N is
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not natural is reflected in the above construction by the fact that ϕi, solving
(2.38), is given only up to ϕi �→ ϕ̄i = ϕi + DiF , with F a scalar field on
N . Under this change gμν given (2.34) remains unchanged only when we set
t �→ t̄ = t− F .

Given the fields (hij , V, σij) on N , we can define the fields r, ri, rij by the
following equations:

D2V = −2r +
1
2
V −1(DV )2 + 2V −2σijσ

ij (2.39)

Di[(−V )−1/2σij ] = (−V )1/2rj (2.40)

Rij = rij +
1
2
V −1DiDjV + 2V −3σikσj

k − 1
4
V −2(DiV )(DjV ).

(2.41)

It then follows from our previous considerations that the spacetime (M, gμν)
satisfies

Rμνdx
μdxν = r(dt + ϕ�dx

�)2 + 2ridx
i(dt + ϕ�dx

�) + rijdx
idxj . (2.42)

In particular, iff r, ri, rij are all zero, (M, gμν) is a vacuum spacetime. In this
case we refer to (2.39,40,41) as ‘the vacuum equations’.

For later use we record another form of the field equations

Gμν = κTμν , (2.43)

where

Tμνdx
μdxν = τ(dt + ϕidx

i)2 + 2τi(dt + ϕjdx
j)dxi + τijdx

idxj , (2.44)

and where we set

gμνdx
μdxν = −e2U (dt + ϕidx

i)2 + e−2U h̄ijdx
idxj , (2.45)

given by

D̄2U =
κ

2
(e−4Uτ + τ̄�

�)− e4U ω̄ijω̄
ij (2.46)

D̄iω̄ij = κe−4Uτj (2.47)
R̄ij = 2(DiU)(DjU)− 2e4U ω̄ikω̄j

k + h̄ije
4U ω̄k�ω̄

k� + κ(τij − h̄ij τ̄�
�).
(2.48)

Here
ω̄ij = ωij = ∂[iϕj] (2.49)

and indices are raised with h̄ij .
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2.2 Axial Symmetry

We now assume the existence of a second, spacelike Killing vector ημ on
(M, gμν). There is the following identity

4∇μ(η[ρωμνλ]) = −Lηωνλρ + 6ξμRμ[νξληρ], (2.50)

where ωμνλ is given by (2.2) and we have used (2.14). Suppose, in addition,
that ξ and η commute. Then the first term on the right in (2.50) vanishes so
that

4∇μ(η[ρωμνλ]) = 6ξμRμ[νξληρ]. (2.51)

In an analogous manner

4∇μ(ξ[ρω′
μνλ]) = −6ημRμ[νξληρ], (2.52)

where ω′
μνλ is given in terms of η in the same way as ωμνλ is given in terms

of ξ. The r.h. sides of (2.51,52) are zero (at points where ξ and η are linearly
independent) iff the timelike 2-plane spanned by ξ and η is invariant under
Rμ

ν . These conditions will be satisfied when the energy momentum tensor
is that of a rotating perfect fluid. We now assume that ημ has an axis, i.e.
vanishes on a timelike 2-surface which is tangent to ξμ. Then, and when the
r.h. sides of (2.51,52) are zero, it follows that

η[ρωμνλ] = ξ[ρω
′
μνλ] = 0. (2.53)

The relations (2.53), in turn, are nothing but the conditions for the 2-plane
elements orthogonal to ξ and η to be integrable (“surface transitivity of ξ
and η”). The above result is due to Kundt and Trümper [38].

For the purposes of Sect. 4.2 we need to transcribe the relations satisfied
by ημ on the quotient manifold N . Writing the 1-form ημ = gμνη

ν as

ημdx
μ = η(dt + ϕidx

i) + ηidx
i, (2.54)

so that
ημ ∂

∂xμ
= (V −1η − ϕiη

i)
∂

∂t
+ ηi ∂

∂xi
, (2.55)

the Killing equations

ηλ∂λgμν + 2gλ(μ∂ν)η
λ = 0 (2.56)

are equivalent to

ηiDiV = 0 (2.57)
2ωijη

j = Di(V −1η) (2.58)
Lηhij = 0, (2.59)
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where ωij := D[iϕj]. The surface transitivity conditions (2.53) get translated
into

η[iDjηk] = 0 (2.60)
η[iωjk] = 0. (2.61)

In particular, ηi is a hypersurface-orthogonal Killing vector on (N,hij). Sup-
pose, now, that the energy momentum tensor is that of a rigidly rotating
perfect fluid, i.e.

Tμν = (ρ + p)uμuν + pgμν , (2.62)

with
uμ = f(ξμ + Ωημ), Ω = const, (2.63)

and f is chosen so that uμ is future-pointing and uμu
μ = −1. With this

specialization the quantities τ, τi, τij entering in the field equation (2.46,47,48)
become

τ = f2(ρ + p)(−e2U + Ωη)2 − pe2U (2.64)
τi = f2(−e2U + Ωη)(ρ + p)Ωηi (2.65)
τij = pe−2U h̄ij + f2Ω2(ρ + p)ηiηj , (2.66)

where ηi = hijη
j . The normalization factor f is given by

f = [e−2U (−e2U + Ωη)2 −Ω2η�η
�]−1/2. (2.67)

The field equations have to be supplemented by the Killing relations (2.57,58,59).
Note that these imply that ρ and p are invariant under ηi (in addition of
course to being invariant under ∂/∂t). Under these circumstances the con-
tracted Bianchi identities, which imply that

∇μT
μν = 0, (2.68)

boil down to the relation

(ρ + p)f−1Dif = Dip, (2.69)

the remaining condition, namely D̄j(e−4Uτj) = 0, being identically satisfied.

2.3 Asymptotic Flatness: Lichnerowicz Theorems

Before stating the conditions for stationary spacetimes to be asymptotically
flat, we elaborate somewhat more on the vacuum field equations. First recall
from (2.17) that, when M (or equivalently: N) is simply connected, there
exists a field ω on N such that

σij =
1
2
(−V )1/2εij

kDkω, (2.70)
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where we have used (2.16) and

εijkdx
idxjdxk = (−V )1/2ξμεμνλσdx

νdxλdxσ. (2.71)

(Of course, the existence of ω could have also been inferred from (2.40) for
ri = 0.) We now rewrite the vacuum equations in terms of the conformally
rescaled metric h̄ij (see (2.45)), given by

h̄ij = (−V )hij . (2.72)

Then (2.39,40,41), together with (2.70) lead to

D̄2V = V −1(D̄V )2 − V −1(D̄ω)2 (2.73)
D̄2ω = 2V −1(D̄ω)(D̄V ) (2.74)

and
R̄ij =

1
2
V −2[(DiV )(DjV ) + (Diω)(Djω)], (2.75)

or

Ḡij =
1
2
V −2

{
(DiV )(DjV ) + (Diω)(Djω)− 1

2
h̄ij [(D̄V )2 + (D̄ω)2]

}
.

(2.76)
We can now give an interesting geometric interpretation of the vacuum equa-
tions (2.73,74,76). Namely, let P be the Poincaré half-plane with metric qAB

given by

qABdzAdzB = V −2(dV 2 + dω2) (V > 0,−∞ < ω < ∞). (2.77)

Viewing (z1(x), z2(x)) = (V (x), ω(x)) as a map from (N, h̄ij) to (P, qAB),
one easily checks that (2.73,74) are exactly the conditions in order for this
map to be harmonic, in other words

D̄2zA + ΓA
BCzB

,jz
C

,j h̄
ij = 0, (2.78)

where ΓA
BC denotes the Christoffel symbols of qAB , composed with zC(x).

The metric h̄ij(x), of course, is not given, but has to satisfy (2.51). The r.h.
side of (2.51), in turn, is nothing but the energy momentum tensor of the
harmonic map. (P, qAB) can also be viewed as a spacelike hyperboloid in
(2+1)-dimensional Minkowski space. Namely, define fields

ΦM =
V 2 + ω2 − 1

−4V
, ΦS = − ω

2V
, ΦK = −V 2 + ω2 + 1

4V
. (2.79)

Then
−Φ2

K + Φ2
M + Φ2

S = −1
4
. (2.80)

Viewing (ΦK , ΦM , ΦS) as coordinates on R3 with Lorentz metric 4(−dΦ2
K +

dΦ2
M + dΦ2

S), the induced metric under the map (2.79) is nothing but qAB .
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The fields ΦM , ΦS are the potentials first introduced by Hansen [25] which
we shall use in Sects. 3.1 and 3.2.

As with any harmonic map, we can associate a conserved current on
N with any Killing vector on the target space P. Since P has SO(2, 1) as
isometry group, there are three independent such Killing vectors, namely

1
η A ∂

∂zA
=

∂

∂ω
(2.81)

2
η A ∂

∂zA
= V

∂

∂V
+ ω

∂

∂ω
(2.82)

3
η A ∂

∂zA
= ωV

∂

∂V
+

1
2
(ω2 − V 2)

∂

∂ω
. (2.83)

We note in passing that the SO(2, 1) isometry of P is closely related to the
“Ehlers transformation” discussed in the article by Maison in this volume.
The conserved current ji associated with any Killing vector ηA on P is given
by

ji = zA
,iη

BqAB . (2.84)

Hence
1
ji = V −2Diω (2.85)
2
ji = V −1DiV + V −2ωDiω (2.86)
3
ji = V −1ωDiV + (2V )−2(ω2 − V 2)Diω (2.87)

are all divergence-free on (N, h̄ij). By (2.70) and (2.38),
1
ji is also equal to

1
ji= ε̄i

jkDjϕk, (2.88)

and so the “charge” associated with
1
ji is always zero. In the asymptotically

flat we shall turn to later, (2.87) will be identically zero.
The quantity (2.86) has the following spacetime interpretation (compare

[23]). Let Σ be a 2-surface in M which projects down to a smooth 2-surface
on N . Then there exist local coordinates (xμ) = (t, xi) such that Σ is given
by

xμ(yA) = (0, xi(yA)), A = 1, 2. (2.89)

Now integrate the quantity εμνρσ∇ρξσ over Σ. After some computation one
finds

εμνρσ(∇ρξσ)
∂xμ

∂y1

∂xν

∂y2 = (−V )−1/2(∂iV − 2σijϕ
j)εi

k�
∂xk

∂y1

∂x�

∂y2 (2.90)

where, as before, σij = V 2∂[iϕj]. Now, using (2.70),

−2(−V )−1/2σijϕ
j + (−V )−3/2ωDiω = Dj(ωεij

kϕk). (2.91)
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Thus, when Σ is closed, the integral I of the expression (2.91) is given by
(h̄ij = (−V )hij)

I =
∫

Σ

(−V )−1(DiV + V −1ωDiω)dS̄i. (2.92)

The fact that this integral in vacuum only depends on the homology class of
Σ arises, in the spacetime picture, from the fact that

∇μ∇[μξν] = 0, when Rμν = 0. (2.93)

The quantity

M =
1
8π

I (2.94)

is called the Komar mass of (M, gμν). For the Schwarzschild solution it coin-
cides with the Schwarzschild mass when the “outward” orientation is chosen
for dS̄i.

We now come to the

Boundary Conditions

Recall that we require (M, gμν) to be connected, simply connected and chrono-
logical. Let, in addition, M contain a compact subset K and let M \ K be
an “asymptotically flat end”. (The results of this subsection will remain to
be true if M \K consists of finitely many asymptotic ends.) This means that
M \K should be diffeomorphic to MR (R > 0) with

MR = {(x0, xi) ∈ R1 × (R3 \B(R))} (2.95)

with B(R) a closed ball of radius R. In terms of this diffeomorphism, the
metric gμν in M \ K has to satisfy that there exists a constant C > 0 such
that (see [3])

|gμν |+ |gμν |+ rα|gμν − ημν |+ r1+α|∂σgμν |+ r2+α|∂σ∂ρgμν | ≤ C (2.96)

g00 ≤ −C−1, g00 ≤ −C−1 (2.97)

∀ Xi ∈ R3 gijX
iXj ≥ C−1

∑
(Xi)2. (2.98)

We assume α > 1/2. Furthermore we require Rμν to be zero in M \ K.
(This latter condition could be considerably relaxed.) It now follows that
the level set x0 = 0 is a spacelike submanifold of M \ K which has a finite
ADM-momentum pμ (see [3]). If pμ is a timelike vector (which it will be
for ‘reasonable’ matter except in the vacuum case), it now follows from the
timelike character of ξμ that it has to be an asymptotic time translation, i.e.

|ξμ −Aμ|+ r|∂σξ
μ|+ r2|∂ρ∂σξ

μ| ≤ Cr−α, (2.99)
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where the constants Aμ satisfy

AμAνημν < 0 (2.100)

(see [3]). Furthermore it follows from [3], that in M \K, or a subset thereof
diffeomorphic to MR′ for sufficiently large R′ > R, there are coordinates
(t, yi) in terms of which gμν is again asymptotically flat with the same α > 1/2
and so that ξμ is of the form ξμ ∂/∂xμ = ∂/∂t. Hence, in the coordinates
(t, yi), which we now call (t, xi), the metric

gμνdx
μdxν = V (dt + ϕidx

i)2 + hijdx
idxj (2.101)

satisfies

|V + 1|+ r|∂iV |+ r2|∂i∂jV | ≤ Cr−α (2.102)
|ϕi|+ r|∂jϕi|+ r2|∂k∂jϕi| ≤ Cr−α (2.103)
|hij − δij |+ r|∂khij |+ r2|∂k∂�hij | ≤ Cr−α (2.104)

in M \ C. It follows that

r|σij |+ r2|∂kσij | ≤ Cr−α. (2.105)

We remark that the time coordinate t, which is at first only defined in the
open subset M \ K of M , can be (Kobayashi–Nomizu [36]) extended to a
smooth global cross section of π : M → N .

We now state and prove two uniqueness theorems due to Lichnerowicz
[41], which are basic for the theory of stationary solutions.

Staticity theorem: Let (M, gμν , ξ
λ) be asymptotically flat with α > 1/2, ξμ

be an asymptotic time translation. If the matter is non-rotating relative to
ξμ, i.e. ri in (2.40) is zero, then the spacetime is static.

Proof: From (2.40) we have

Di[(−V )−1/2σij ] = 0. (2.106)

Contract (2.106) with ϕj , using σij = V 2D[iϕj]. It follows that

Di[(−V )−1/2σijϕ
j ] = (−V )−5/2σijσ

ij . (2.107)

Now integrate (2.107) over N . Since the term in brackets on the left is
O(r−2−2α), the boundary term at infinity gives zero. Consequently σij =
0 ⇒ ωμνλ = 0.

Remark: Since σij = 0, the field ϕi is of the form ϕi = DiF , where F =
O(r1−α). In the coordinates t̄ = t− F , gμν takes the form

gμνdx
μdxν = V dt2 + hijdx

idxj . (2.108)
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Vacuum theorem: Let (M, gμν , ξ
λ) satisfy the conditions in the staticity theo-

rem and let (M, gμν) in addition be vacuum. Then (M, gμν) is the Minkowski
space.

Proof: Firstly, by the staticity theorem, we have that σij = 0. Using this in
(2.39) for r = 0 we have with v := (−V )1/2 that

D2v = 0. (2.109)

By the maximum principle, or multiplying (2.109) by μ, integrating by parts
and using μ− 1 = O(r−α), ∂iμ = O(r−1−α), we infer that μ ≡ 1. Now (2.41)
implies Rij = 0 ⇒ Rijk� = 0 since dimN = 3. Since N is simply connected,
it follows that (N,hij) is flat R3. Thus

gμνdx
μdxν = −dt2 + δijdx

idxj . (2.110)

2.4 Newtonian Limit

Ehlers showed (unpublished, see [49]) that one can write the field equation
containing a parameter λ = c−2 such that the equation remain meaningful
for λ = 0 and then they are equivalent to the Newtonian equations. The
variables for which this is true in the time dependent case have to be chosen
in a quite sophisticated way. The stationary case can be treated in a direct
and simple way as follows.

We write the metric as

gμνdx
μdxν = −e− 2U

c2 (cdt + ϕidx
i)2 + e

2U
c2 h̄ikdx

idxk (2.111)

where we inserted “c” by dimensional analysis. The field equations decom-
posed in section 2.1

Rμν =
8πG
c4

(Tμν −
1
2
Tgμν) (2.112)

for the energy momentum tensor

Tμν = c2τ(cdt + ϕidx
i)2 + 2cτi(cdt + ϕjdx

j)dxi + τijdx
idxj (2.113)

become
D̄2U = 4πG(e− 4U

c2 τ + c−2τ̄ l
l )− e

4U
c2 ω̄ijω̄

ij (2.114)

D̄iω̄ij = 8πGc−3e− 4U
c2 τj (2.115)

R̄ij = 2c−4DiUDjU − 2e
4U
c2 ω̄ikω̄j

k + h̄ije
4U
c2 ω̄klω̄

kl + 8πGc−4(τij − h̄ij τ̄
l
l )

(2.116)
Considered as equations for U, h̄ij , φi, τ, τi, τij , (2.114–116) have a limit for
c →∞.

In the static case the limit is

D̄2U = 4πGτ (2.117)
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R̄ik = 0 (2.118)

Hence we obtain immediately that the metric h̄ik of the quotient is flat and
therefore (2.117) is the Poisson equation of Newton’s theory. The connection
has also a limit and the only non vanishing Christoffel symbol is Γ i

tt = D̄iU .
The equation of motion ∇νT

μν = 0 becomes in the limit the Newtonian
equilibrium condition D̄jτij = −τDjU .

Now to the stationary case: Because the right hand side of (2.115) vanishes
in the Newtonian limit, the Lichnerowicz theorem implies that ωik = 0 which
in turn implies by (2.116) that R̄ik = 0 whence the metric on the quotient is
again flat.

For the metric written in the form (1) the connection has no limit for
c →∞. If we use however as a consequence of the field equations that ωij = 0,
the connection has a limit and the equations of motion become the Newtonian
equilibrium conditions, i.e.

D̄iτi = 0 , D̄jτij = −τDjU . (2.119)

2.5 Existence Issues and the Newtonian Limit

The fact that the equations can be written to contain λ = c−2 in such a
way that they are analytic in λ and are the Newtonian equations for λ = 0,
suggests to use this structure for existence theory. In this section we will make
some remarks about the static case. In section 4.2 an existence theorem for a
rigidly rotating body by Heilig will be discussed which exploits the fact that
the equations have a nice Newtonian limit.

To obtain partial differential equations for which there is an existence
theory we write (2.104) and (2.105) in the static case in harmonic coordinates
on N , defined by D̄2xi = 0, for the unknowns U and Zij defined by h̄ij =
δij + λ2Zij and obtain:

ΔU := δij∂i∂jU = 4πGτ + A(λ, τ, τij , Z
ij) (2.120)

ΔZij = −4∂kU∂lUδikδlj − 16πG(τ̄ ij − τ̄ δij)
+ λ2Bij(λ, τ, τkl, Z

kl, ∂mZkl, ∂m∂nZ
kl) (2.121)

here we used the well known expression for the Ricci tensor in harmonic
coordinates

R̄ij = −1
2
h̄kl∂k∂lh̄

ij + Hij(∂h̄, ∂h̄) (2.122)

where Hij is quadratic in the first derivatives of h̄ij . As usual we call (2.120),
(2.121) the reduced field equations. These form a quasilinear elliptic system
with the property that for given small sources τ, τij of compact support and
small λ there exist unique solutions U,Zij which tend to 0 at infinity.

In particular we can choose for τ, τij a Newtonian solution and determine
then for small λ a relativistic solution of the reduced field equations which



Time-Independent Gravitational Fields 341

have a Newtonian limit. Is is to be expected that the solution will be analytic
in λ. Then the Taylor expansion in λ can be considered as a converging post
Newtonian expansion.

A solution of the reduced field equations is only solution of the field equa-
tion if it satisfies the harmonicity condition or equivalently if ∇μT

μν = 0
holds. To solve the reduced equations and the equation of motion is a much
harder problem. It makes only sense once a matter model is chosen.

In the static case only matter models of elasticity lead to new interesting
problems because, as we will see in Sect. 5.2 , static fluids are spherically
symmetric and can be investigated by ordinary differential equations (see
Sect. 5.3). Some remarks on static, small self gravitating bodies can be found
in Sect. 5.1.

For a stationary rigidly rotating fluid Heilig has given an existence the-
orem by perturbing away from a Newtonian solution. We will describe this
result in Sect. 4.2.

3 Far Fields

3.1 Far-Field Expansions

While, as we have seen, little is known so far about globally regular, asymp-
totically flat solutions to the stationary field equations with reasonable matter
sources, there is an almost complete understanding of the behaviour of gen-
eral asymptotically flat solutions near spatial infinity, which we now describe.

Here the quotient manifold N is of the form

N = R3 \B(R).

On N there are given the fields (hij , V, ϕi) satisfying (2.39,40,41). The whole
discussion is “local-at-infinity”. In particular one has to allow for R in B(R)
to be made suitably large, as one proceeds. We will do so tacitly without
changing the letter “R”. The Einstein equations are given by

D̄2V = V −1(D̄V )2 − V −1(D̄ω)2 (3.1)
D̄2ω = 2V −1(D̄ω)(D̄V ) (3.2)

Ḡij =
1
2
V −2{(DiV )(DjV ) + (Diω)(Djω)− 1

2
h̄ij [(D̄V )2 + (D̄ω)2]}.(3.3)

By the asymptotic conditions (2.102–104), ω tends to a constant at infinity.
Subtracting this from ω, and calling the result again ω, we find that

|ω|+ r|∂iω|+ r2|∂i∂jω| ≤ Cr−α. (3.4)

In short, we have that

V = −1+O(r−α), ω = O(r−α), h̄ij−δij = O(r−α), 1 > α > 1/2
(3.5)



342 Robert Beig and Bernd Schmidt

and that these relations may be differentiated twice. The condition α > 1/2
could be relaxed (see Kennefick and Ó Murchadha [34]). It now follows that

ΔV = O(r−2−2α) (3.6)
Δω = O(r−2−2α). (3.7)

Since the r.h. sides of (3.6,7) decay stronger than O(r−3), it follows from
standard results in potential theory [33,73] that there exist constants M,S
such that

V = −1 +
2M
r

+ O(r−1−α) (3.8)

ω =
2S
r

+ O(r−1−α). (3.9)

But the existence of ϕi in (2.36) implies that S has to be zero.
Equation (3.3), which involves second derivatives of the metric h̄ij , yields

Δ(kij −
1
2
δijk)− 2∂(iΓj) + δij∂�Γ� = O(r−2−2α), (3.10)

where kij = h̄ij − δij , k = kii and

Γi = ∂jkij −
1
2
∂ik. (3.11)

This equation can be viewed in two ways, both of which recur in the higher-
order steps leading to the theorem below. Firstly, in the gauge where Γi = 0,
i.e. the linearized harmonic gauge for h̄ij , it is an elliptic equation, namely
essentially the componentwise Laplace equation, for the leading-order part of
kij . Secondly, (3.10) can be rewritten as

εi�mεjnp∂�∂nkmp = O(r−2−2α), (3.12)

which expresses the fact that the linearized Riemann tensor of h̄ij decays
faster than O(r−3). Note that (3.12) makes essential use of the three-dimen-
sionality of space. It follows [73] that there exists gi = O(r1−α) such that

kij = ∂igj + ∂jgi + O(r−2α). (3.13)

Thus the leading-order contribution to the metric h̄ij is “pure gauge”.
To next order in 1/r one finds that there is a gauge, namely

Γi = O(r−3−α), (3.14)

for which

V = −1 +
2M
r

− 2Mix
i

r3 +
2M2

r2 + O(r−1−2α) (3.15)

ω =
2Six

i

r3 + O(r−1−2α) (3.16)



Time-Independent Gravitational Fields 343

and for which h̄ij can be brought into the form

kij = −M2(δijr
2 − xixj)
r4 + O(r−1−2α). (3.17)

In the above M,Mi, Si are constants. All indices are lowered and raised with
δij . When M �= 0 one can, by a rigid translation, arrange for Mi = 0. In that
case the metric gμν obtained from (3.15–17) coincides, to order 1/r2, with
that of the Kerr spacetime with |S| = −Ma, M being the mass and a being
the Kerr parameter.

In order to extend the above result to higher orders in 1/r, it is convenient
to replace (V, ω) by some other choice of scalar potentials. One choice, due
to Hansen [25], is to set (see (2.79))

φM = −V 2 + ω2 − 1
4V

(3.18)

φS = − ω

2V
(3.19)

φK = −V 2 + ω2 + 1
4V

(3.20)

It then turns out that (φα) = (φM , φS , φK) all satisfy

D̄2φα = 2R̄φα. (3.21)

Then one has [73] the following

Theorem: There exists a gauge, namely that where Γi = O(r−m−1−α), for
which there are constants A . . . , B . . . , . . . , G . . . such that

φM =
m−1∑
�=0

Ei1...i�
xi1 . . . xi�

$!r2�+1 + O∞(r−m+1−2α) (3.22)

φS =
m−1∑
�=0

Fi1...i�
xi1 . . . xi�

$!r2�+1 + O∞(r−m+1−2α) (3.23)

φK =
1
2

+
m−1∑
�=0

Gi1...i�−1x
i1 . . . xi�−1

$!r2�
+ O∞(r−m+1−2α) (3.24)

Note that E = M ,

h̄ij = δij +
m∑

�=2

(
xixjAi1...i�−2x

i1 . . . xi�−2

r2�
+

δijBi1...i�−2x
i1 . . . xi�−2

r2�−2

+
x(iCj)i1...i�−3x

i1 . . . xi�−3

r2�−2 +
Diji1...i�−4x

i1 . . . xi�−4

r2�−4

+O∞(r−m+1−2α)
)

. (3.25)
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All constants are symmetric in their i1 . . . indices. The constants D are
also symmetric in i and j. The constants C . . . appear only for m ≥ 3, the
constants D . . . only for m ≥ 4. The symbol O∞(rk) means that the quantity
in question is of O(rk), its derivative is O(rk−1), a.s.o. Furthermore all con-
stants are determined by the tracefree parts of E . . . , F . . . in a way which
does not depend on the solution at hand. The tracefree parts of E . . . are the
analogues of the Newtonian multipole moments. The constants F . . . play
an analogous role for the “angular-momentum aspect”, which does not have
a Newtonian counterpart. The three-metric h̄ij , for reasons explained after
(3.14), has no independent degrees of freedom.

This theorem shows, in essence, that any stationary, asymptotically flat
solution to the Einstein vacuum equations is uniquely determined by the
“moments” E . . . , F . . .. However no statement concerning convergence of
series like the ones appearing in (3.22–25) can be made. In order to do that
it is necessary to use “conformal compactification” of three-space N .

3.2 Conformal Treatment of Infinity, Multipole Moments

Before turning to the situation G.R., it is instructive to recall the Newtonian
situation. Suppose we are given a Newtonian potential near infinity, i.e. a
function φ with

Δφ = 0 on R3 \B(R). (3.26)

Extending φ smoothly to all of R3, we thus have that

Δφ = 4πρ with ρ ∈ C∞
0 (R3) (3.27)

and φ → 0 at infinity. Thus φ is of the form

φ(x) = −
∫
R3

ρ(x′)
|x− x′|dx

′. (3.28)

In R3 \ B(R) this can (see e.g. [33]) be expanded in a standard fashion in
powers of 1/r. One obtains an expansion of the form

φ =
∞∑

�=0

Ei1...i�
xi1 . . . xi�

$!r2�+1 , (3.29)

with Ei1...i�
totally symmetric and tracefree. One shows [33,73] that this series

converges absolutely and uniformly in R3 \B(R) for sufficiently large R.
As a warm-up for G.R. it is useful to rephrase the Newtonian situation

using “conformal compactification”. First observe that there is a positive
smooth function Ω on N = R3 \ B(R) with the following properties. The
metric

h̃ij = Ω2δij (3.30)
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extends to a smooth metric on the one-point compactification

Ñ = N ∪ {r = ∞} = N ∪ {Λ}, (3.31)

where
Ω|Λ = 0, D̃iΩ|Λ = 0 (3.32)

and
D̃iD̃jΩ − 2h̃ij = 0. (3.33)

To prove this, take Ω = 1/r2 and introduce

x̃i =
xi

r2 (3.34)

as coordinates on Ñ . One also sees that h̃ij is again the standard flat metric
in the coordinates x̃i. (This would also follow from (3.33) and the standard
formula for the behaviour of Rij under conformal rescalings.) As for the
potential, rewrite (3.26) as (

D2 − R

6

)
φ = 0, (3.35)

and observe that the operator in (3.35) obeys(
D̃2 − R̃

6

)
φ̃ = Ω−5/2

(
D2 − R

6

)
φ, (3.36)

when h̃ij = Ω2hij and φ̃ = Ω−1/2φ for arbitrary Ω > 0. Thus we again have(
D̃2 − R̃

6

)
φ̃ = D̃2φ̃ = 0, (3.37)

at first only on N .
In the case of G.R. we were unable to prove convergence of the multipole

series, but only an asymptotic estimate like

φ =
m−1∑
�=0

Ei1...i�
xi1 . . . xi�

$!r2�+1 + O∞(r−m+1−2α). (3.38)

But, from (3.38) for m = 4, it follows immediately that φ̃ extends to a C3-
function on Ñ . Thus, by continuity

D̃2φ̃ = 0 on Ñ . (3.39)

But it is a standard fact that solutions to the Laplace equation and, more
generally, for non-linear elliptic systems with analytic coefficients [55], are
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themselves analytic. Thus φ̃ has a convergent Taylor expansion at the point
Λ. But this is nothing but (3.29) in inverted coordinates. Furthermore the
multipole moments Ei1...i�

can now be viewed as the Taylor coefficients of φ̃
at Λ. It follows from (3.39) that they have to be tracefree, and it is trivial
that they determine φ̃ uniquely.

Suppose Ω is just required to satisfy (3.32,33). Then, given hij , there is
in (h̃ij , Ω) the following 3-parameter gauge freedom

Ω′ = ωΩ, (3.40)

h̃′
ij = ω2h̃ij , (3.41)

where
ω = (1− biD̃iΩ + bibiΩ)−1, (3.42)

with D̃ib
j = 0, which, in the compactified picture, corresponds to the freedom

of choosing an origin in the “physical” space R3, w.r. to which the inversion
x̃i = xi/r2 can be made. Therefore the Taylor coefficients of Ũ at Λ behave
under (3.40,41) in a way which precisely corresponds to their dependence on
the choice of origin.

In G.R. it is impossible to require a conformal compactification for which
(3.33) holds everywhere. We call a 3-metric h̄ij on a manifold N ∼= R3 \B(R)
conformally Ck, when there exists a Ck-function Ω > 0 on N such that
h̃ij = Ω2h̄ij extends to a Ck-metric on Ñ = N ∪ {Λ} and

Ω|Λ = 0, D̃iΩ|Λ = 0, (3.43)

(D̃iD̃jΩ − 2h̃ij)
∣∣∣
Λ

= 0. (3.44)

A scalar potential φ is called conformally Ck, when φ̃ = Ω−1/2φ extends to a
Ck-function on Ñ . Given (3.43,44) there is now a much larger gauge freedom
involved in constructing the unphysical from the physical quantities, namely

Ω′ = ωΩ, h̃′
ij = ω2h̃ij , φ̃′ = ω−1/2φ (3.45)

where ω satisfies ω|Λ = 1. Now consider, following Geroch [22], this recur-
sively defined set of tensor fields on Ñ :

P0 = φ̃ (3.46)

Pi = Diφ̃ (3.47)

Pij = TS

[
D̃iDj φ̃− 1

2
R̃ij φ̃

]
(3.48)

Pi1...im+1 = TS

[
D̃im+1Pi1...im

− s(2s− 1)
2

R̃i1i2Pi3...im+1

]
, (3.49)
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where TS denotes the operation of taking the symmetric, trace-free part. It
turns out that the tensors

Ei1...im
= Pi1...im

|Λ (3.50)

behave under (3.45) in exactly the same way as the Newtonian moments
under the restricted gauge freedom (3.40–42) with bi = D̃iω|Λ. Thus the Ricci
terms in (3.46–49) cancel out unwanted dependencies from higher-than-first
derivatives of ω at Λ.

Now return to the expansions (3.22–25) for some fixed m ≥ 1. Performing,
again, an inversion x̃i = xi/r2 and setting, in these coordinates,

φ̃M = Ω−1/2φM , φ̃S = Ω−1/2φS , (3.51)

h̃ij = Ω2h̄ij (3.52)

with Ω = 1/r2 we find that (φ̃M , φ̃S , h̃ij) are all Cm. Furthermore Ω is C∞.
Thus we have obtained a Cm conformal compactification. Our proof would
be complete if we could find an elliptic system satisfied by (h̃ij , φ̃M , φ̃S) or
quantities derived from them. Doing this is not completely trivial. We explain
the essentials in the static case where φS = 0. Thus

D̄2φM = 2R̄φM (3.53)

R̄ij =
2

1 + 4φ2
M

(DiφM )(DjφM ). (3.54)

Let us assume that M �= 0. Define, instead of 1/r2 as above, a conformal
factor also called Ω by

Ω =
[(−V )1/2 − 1]2

(−V )1/2 . (3.55)

It is not hard to see from (3.22–25) that this yields a Cm-compactification
(φ̃M , h̃ij) where, however, we have for convenience replaced (3.44) by(

D̃iD̃jΩ − 2
M2 h̃ij

)∣∣∣∣
Λ

= 0. (3.56)

It is useful to employ, as the scalar variable in the unphysical picture neither
φ̃M nor Ω, but the quantity σ defined by

σ :=
[
(−V )1/2 − 1
(−V )1/2 + 1

]2

. (3.57)

After some labor we find from (3.53,54) that

R̃ = 0 (3.58)
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and
−σ(1− σ)R̃ij = D̃iD̃jσ − 1

3
h̃ijD̃

2σ. (3.59)

The scalar σ satisfies

σ|Λ = 0, D̃iσ|Λ = 0, D̃2σ|Λ =
3

2M2 . (3.60)

Taking a “curl” of (3.59) we obtain

(1− σ)D̃[iR̃j]k = 2(D̃[iσ)R̃j]k − h̃k[iR̃j]�D̃
�σ. (3.61)

If we take D̃i of the quantity D̃[iR̃j]k and use the Ricci and Bianchi identities
we find the relation

D̃2
R̃jk =

1
2
D̃jD̃kR̃+2D̃iD̃[iR̃j]k +3(R̃jiR̃

i
k−

1
2

R̃R̃jk)− 1
2
h̃jk(R̃i�R̃

i�− 1
2

R̃
2).

(3.62)
Using that R̃ is zero and (3.62), writing R̃ij = τij , and using (3.59) to elimi-
nate second derivatives of σ, we obtain an equation of the form

D̃2τij = non-linear terms, (3.63)

where these non-linear terms depend at most on τij , σ and their first deriva-
tives and on D̃2σ. We call D̃2σ = ρ. From the divergence of (3.59) we infer
that

ρσ =
3
2
(D̃σ)2, (3.64)

and from this after some work that

D̃2ρ = 3σ(1− σ)2R̃ijR̃
ij + 3R̃ij(D̃iσ)(D̃jσ). (3.65)

Now (3.63) can be completed as follows:

R̃ij = τij (3.66)

D̃2τij = non-linear terms (3.67)

D̃2σ = ρ (3.68)

D̃2ρ = 3σ(1− σ)2R̃ijR̃
ij + 3R̃ij(D̃iσ)(D̃jσ). (3.69)

Going over to harmonic coordinates, the “non-elliptic” terms in the expres-
sion of R̃ij in (3.66) in terms of the metric go away, and the whole set of (3.66-
69) becomes an elliptic system. Note that the point of the whole manœuvre
was that the original eq. (3.59), when written in terms of h̃ij is singular since
σ|Λ = 0. The miracle was that, in the transition from (3.59) to (3.61) a factor
σ is obtained on both sides of (3.61) which can be cancelled since σ is nonzero
outside Λ by (3.57).

Thus, taking m sufficiently large and appealing to the theorem of Morrey
[55], we have the
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Theorem: When M �= 0, there is a chart in a neighbourhood of Λ for which
(σ, h̃ij) are analytic. Consequently, from (3.57), Ω is also analytic, and so is
φ̃M = (1− σ)−3/2.

An analogous result can be proved for a suitable set (h̃ij , Ω, φ̃M , φ̃S) in
the stationary case [6], see also [39]. The equations one obtains imply in
particular that the “physical” quantities (h̄ij , φM , φS) have an analytic chart
in a neighbourhood of each point of N and thus entail the “classic” result of
Müller zum Hagen on the analyticity of stationary vacuum solutions [57].

By smoothness of (h̃ij , φ̃M , φ̃S) we can define multipole moments for each
of φ̃M , φ̃S , following (3.46–50). One can show [73] that they coincide with
the quantities E . . . and F . . . in the expansions (3.22–25). (These, in turn,
coincide with the ones in Thorne [74], as shown in [24]). One can now prove
[6], that these moments determine the stationary solution uniquely up to
isometries. We give a more careful formulation of this result only in the
static case.

Theorem: Let there be two static solutions with the same h̃ij |Λ, the same
M �= 0 and the same set of (mass-centered) multipole moments. Then the
corresponding physical solutions (h̄ij , φM ) are isometric.

The proof is a not-too-difficult inductive argument based on (3.61,62),
(3.68,69) and (3.59,60).

There remains the question to what degree the multipole moments of
stationary solutions can be prescribed. It is fairly easy to see, e.g. from
the asymptotic analysis of Sect. 3.1, that the multipole moments are “al-
gebraically independent”, i.e. for a given finite number of them, there always
exists a spacetime having those moments which solves the stationary field
equations to arbitrary order in 1/r. It is not known what conditions on mo-
ments for high order have to be imposed in order for the multipole expansion
to converge. In particular, convergence is not even known when only finitely
many moments are non-zero.

There are of course solution-generating techniques to in principle write
down the general stationary axisymmetric spacetime. To date the only result
on existence of stationary asymptotically flat solutions without any further
symmetry is that of Reula [66].

We note, in passing that the above equations lend themselves to an easy
proof of a result which is often used in black-hole uniqueness theorems (see
[31]). Namely an asymptotically flat, static vacuum solution with M �= 0,
which is spatially conformally flat, has to be isometric to the Schwarzschild
metric near Λ. To see this, use that now the Cotton tensor of h̃ij is zero.
Thus, since R̃ = 0, the left-hand side of (3.61) vanishes. Contracting the r.h.
side of (3.61) with (D̃iσ)R̃jk we find that

2(R̃ijR̃
ij)(D̃σ)2 = (R̃ijD̃

jσ)(R̃i
�D̃

�σ). (3.70)
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But, by Cauchy–Schwarz, the right-hand side of (3.70) is bounded above by

(R̃ijR̃
ij)(D̃σ)2,

which has hence to be zero. Since σ can not have critical points near Λ except
at Λ itself, it follows that

R̃ij = 0, (3.71)

whence, from (3.59), D̃2σ = 3/2M2 and thus, in a chart x̃i for which h̃ij = δij

we have σ = |x̃|2/4M2, from which it easily follows that (h̄ij , φM ) corresponds
to Schwarzschild with mass M .

4 Global Rotating Solutions

4.1 Lindblom’s Theorem

Lindblom showed in his thesis [45] that stationary asymptotically flat dissi-
pative fluid configuration are axisymmetric. In this section we want to outline
and discuss this theorem.

There are three ingrediences of the proof:

(i) The local fluid field equations imply that the fluid flow is proportional to a
Killing vector tμ provided the divergence of the entropy current vanishes.

(ii) The Killing field tμ has an extension into the vacuum field of the solution.
(iii) If the manifold of orbits of the stationary Killing vector ξμ is R3 and

asymptotically flat, then ξμ is linearly independent of tμ. The two Killing
fields commute and there is a linear combination of the two Kiliing fields
which has fixed points near which it act like a rotation.

(i) Theorem: Let gμν , Tμν be a stationary local solutions of the Einstein field
equations for a one–component fluid with phenomenological heat conduction
and viscosity laws and vanishing of the divergence of the entropy current.
Then the fluid flow is proportional to a Killing vector.

Proof: The energy momentum tensor for a fluid with shear and bulk viscosity
is [54] (θ and σμν are the expansion and shear of the fluid; qμ is the heat flow
[20])

Tμν = ρuμuν + (p− ζθ)hμν − 2ησμν + qμuν + qνuμ (4.1)

with
hμν = gμν + uμuν , qμu

μ = 0, σμνu
μ = 0 . (4.2)

This implies (a dot denotes the covariant derivative in the direction of the
fluid flow uμ)

0 = −(∇μT
μν)uν = ρ̇ + (ρ + p)θ − ζθ2 − 2ησμνσμν +∇μq

μ + qμu̇
μ . (4.3)
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Introducing n, the conserved rest-mass density, and the specific volume v = 1
n

and the specific internal energy u = ρ
n we can rewrite this, using ∇μ(nuμ) =

0, as
n(u̇ + pv̇)− ζθ2 − 2ησμνσμν +∇μq

μ + qμu̇
μ = 0 . (4.4)

For a one-component fluid we have an equation of state u = u(p, v) and conse-
quently there exist scalar functions T (p, v) and s(p, v) with the interpretation
of temperature and specific entropy such that

du + pdv = Tds . (4.5)

Hence n(u̇ + pv̇) = nT ṡ can be used to rewrite (4.4) as

nT ṡ− ζθ2 − 2ησμνσμν +∇μq
μ + qμu̇

μ = 0 (4.6)

or
nṡ + T−1∇μq

μ = T−1(ζθ2 + 2ησμνσμν − qμu̇
μ) = 0 . (4.7)

Using again ∇μ(nuμ) = 0 we obtain

∇μ(nsuμ + T−1qμ) = T−1[ζθ2 + 2ησμνσμν − qμ(u̇μ + T−1∇μT )] = 0 . (4.8)

Inserting the phenomenological law of heat conduction

qμ = −κhν
μ(T,ν + T u̇ν) (4.9)

we obtain

∇μ(nsuμ + T−1qμ) = T−1(ζθ2 + 2ησμνσμν + κT−1qμq
μ) = 0 . (4.10)

The left-hand side of this equation is the conserved entropy current ∇μs
μ

which vanishes according to our assumptions. Hence the positivity of λ, ζ
and κ implies θ = σμν = qμ = 0 and u̇μ = −T−1T,μ .

Assume T �= 0 and consider ξμ = T−1uμ, the candidate for the Killing
vector. We have

∇(μξν) = −T−2∇(μTuν) + T−1∇(μuν) . (4.11)

The vanishing of θ = σμν = qμ = 0 implies ∇(μuν) = −u̇(μuν) =
T−1(∇(μT )uν), hence ∇(μξν) = 0.

Now we come to the most complicated part, the extension of the Killing
vector proportional to the fluid flow from the fluid into the surrounding vac-
uum region.

(ii) Conjecture: Let gμν , Tμν be a strictly stationary, asymptotically flat
perfect fluid solution where the matter is a ball of finite extent and the fluid
flow is proportional to a Killing vector tμ. Then tμ has a unique extension into
the vacuum region, provided certain differentiability conditions are satisfied
at the boundary.
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In Lindblom’s original treatment this conjecture was shown to be true
under the assuption that the outside metric is analytic up to and including
the boundary Σ of the fluid. Then one can propagate the Killing vector into
a neighbourhood of the boundary using the Cauchy Kowalevskaja theorem
because a Killing vector satisfies a wave type equation. Finally a theorem by
Nomizu [61] can be used to obtain a global Killing vector field.

One might, however argue, that analyticity up to and including Σ is too
strong an assumption. On physical grounds one would like to treat also non-
analytic equations of state. In this case it is unlikely that the metric is analytic
in the boundary.

Finally we show that the new Killing vector tμ is actually different from
the stationary Killing vector ξμ.

(iii) Theorem: Under the assumption of the above conjecture we have:
(1) The Killing vectors ξμ and tμ are linearly independent.
(2) Both Killing vectors commute.
(3) There exists a linear combination ημ = tμ+aξμ which has fixed points

and acts like a rotation with closed orbits.

Proof: (1) Suppose tμ would be linearly dependent of ξμ. Then there would
be a timelike Killing vector, namely tμ, which is asymptotically a translation
and relative to which the matter does not rotate. Hence, by the Licherowicz
staticity theorem, spacetime would have to be static.

(2) As T and uμ are invariant objects we have LξT = 0 and Lξu
ν = 0

which imply immediately [ξ, t] = 0 on the support of the matter. To show
that this is also true outside the matter one can use the analyticity of the
outer metric up to and including the boundary or one can use a theorem by
Beig and Chrusciel [4] classifying all possible group action on asymptotically
flat spacetimes.

(3) As ξμ commutes with tμ there is a Killing vector t̂i on the manifold
of orbits of ξμ. The corresponding group acts in the 2-surface of constant
pressure, in particular in the boundary, p = 0. As this is topologically S2,
there must be a point where t̂i vanishes. A Killing vector on a Riemannian
space with a fixed point acts always as a rotation with closed circular orbits.
At a point q in spacetime projecting on the fixed point of t̂i, tμ must be
proportional to ξμ and therefore a linear combination ημ = tμ + aξμ with
constant coefficients vanishing at q exist such that ημ(q) = 0. We have a
fixed point and because also the timelike direction of ξμ is fixed, ημ acts like
a rotation and has therefore closed orbits.

We see that we can obtain the existence of the axis working only on the
body, provided we know that both Killing vectors are independent. Lind-
blom [43] obtains the axis and commutativity of the Killing vectors from
the asymptotic symmetry group. The key property that the two Killing vec-
tors are linearly independent is only implied by a global argument and uses
asymptotic flatness.
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4.2 Existence of Stationary Rotating Axi-symmetric
Fluid Bodies

Following work by Liapunoff and Poincaré, Lichtenstein [42] demonstrated
at the beginning of this century the existence of rotating fluid bodies in
Newtonian theory. An account of this almost forgotten work can be found
in [71]. Using implicit function theorem techniques – as we would say today
– he shows the existence of solutions near known solutions or approximately
known solutions: starting with a static fluid ball, he obtains a slowly rotating
fluid ball; starting from a self gravitating 2-body point particle solution, he
obtains a solution for two small fluid bodies orbiting their center of mass on
a circle. Furtheremore, there is a number of exact solutions in Newtonian
theory: the Maclaurin spheroids, the Jacobi and the Dedekind ellipsoids and
the Riemann ellipsoids [18].

In Einstein’s theory we do not know any stationary exact solution de-
scribing an extended rotating body. Spacetimes describing such solutions can
be characterized as follows: Besides a timelike Killing vector ξμ there is a
further symmetry, the axial symmetry generated by ημ, whose orbits are cir-
cles (Remember that we showed in Sect. 4.1 that such an extra symmetry
exists on physical grounds) The body is spatially compact and the space-
time with topology R4 is assumed to be asymptotically flat. We assume that
there is an axis where ημ vanishes. Then we can use a result of Carter [16]
which states that under these circumstances the two Killing vectors commute.
Such spacetimes are called ”stationary axisymmetric”, the orbits of the axial
Killing vector are circles.

We showed in Sect 2.2 that for stationary axisymmetric perfect fluids
with an axis and a fluid flow vector contained in the two-surface spanned
by the two Killing vectors, the two-surface elements orthogonal to the two-
dimensional group orbit are surface forming ( the group action is orthogonally
transitive). The same holds in the vacuum region. The property of orthogonal
transitivity is equivalent to the existence of a discrete isotropy group [70].

To introduce a global coordinate system let us assume that outside the
2-dimensional axis the spacetime is the product of the orbits of the isometry
group and the orthogonal 2-surface which we assume to have topology R2.

Using coordinate adapted to the Killing vectors the metric can be written
as

ds2 = gAB(xc)dxAdxB + g00(xC)dt2 + 2g0φ(xC)dtdφ + gφφ(xC)dφ2. (4.12)

Locally we can always introduce coordinates (xA) = (r, z) such that gAB

is conformal to the flat metric in standard coordinates and can therefore write
the metric as

ds2 = e2k−2U (dr2 + dz2) + e−2UW 2dφ2 − e2U (dt + Adφ)2. (4.13)

There is the freedom in (r, z) of an arbitrary conformal transformation
which is given by the real part of analytic function.
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The function W 2 is the volume element of the group orbits. As a conse-
quence of the field equations in vacuum one can locally achieve W = r′ such
that

ds2 = e2k′−2U (dr′2 + dz′2) + e−2Ur′2dφ2 − e2U (dt + Adφ)2. (4.14)

These coordinates are called Weyl’s canonical coordinates. Matters can be
arranged so that r′ = 0 is the axis. Then the coordinates are fixed up to a
translation in z′.

It is tempting to try to extend the Weyl coordinates from the outside of
the body to the interior such that the two-surface orthogonal to the group
orbit is covered by one (r′, z′) system with r′ = 0 describing the axis and
W �= r′ in the interior. However, Müller zum Hagen has demonstrated [56]
that this is impossible in the case of static spherically symmetric solutions.
(r′ becomes negative inside the body and the axis is reached for ρ′ → ∞.)
There is no reason to assume that this would be different in the stationary
case.

Numerical codes work successfully with a global (r, z) coordinate system
such that r = 0 is the axis but it is not assumed that one has Weyl’s canonical
coordinate in vacuum.

For perfect fluids whose velocity is proportional to a constant linear com-
bination of the two Killing vectors, the case of rigid rotation, ∇νT

μν = 0
becomes particularly simple. (See equation (2.69).)

0 = ∇νTμ
ν = (ρ + p)

1
2
(ln f−2),μ + p,μ. (4.15)

where fμ = f2(ξμ + Ωημ) is the four velocity of the fluid. This shows that,
provided an equation of state ρ(p) is given, the matter variables p and ρ can
be expressed as functions of the quantity f which is determined by the geom-
etry. This property of rigidly rotating fluids is essential for all the numerical
schemes as well as for all the attempts to prove existence.

Various authors have developed codes to calculate numerically stationary,
axisymmetric rigidly rotating fluid solutions [12]. Today this can be done
with very high presicion by different numerical techniques. These numerical
solutions are also the basis for investigations of oscillations of rotating stars.

Schaudt and Pfister [68] try to obtain an existence theorem working in
the above coordinates adapted to the symmetry. This approach is attractive
because the field equations become semilinear elliptic. One has, however, to
control the singularities in the equations on the axis. This is possible and
two Dirichlet problems have been solved, which give existence of outside,
asymptotically flat solutions and existence of inner parts of bodies, provided
appropriate boundary values are given [67]. Up to now this was only possible
for the ”outer” and the ”inner” problem separately and work is in progress
which tries to combine the inner and outer solution.

Let us now turn to the discussion of the only existence theorem for ro-
tating fluids in Einstein’s theory. It is remarkable that the first existence
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theorem for rotating fluids, proved by Heilig in 1995 [30], uses Lichtenstein’s
technique and does not adapt the coordinate to the axial Killing vector to
avoid difficulties at the axis.

Let us formulate one particular case of the theorem proved by Heilig [30].

Theorem: Let ρ(p) = Cpγ be a polytropic equation of state with 1 < γ <
6/5. The central density ρ0 determines a unique Newtonian static fluid ball
solution of finite extent. Then there exist a positive constant Ω0 such that for
all Ω with 0 < Ω < Ω0 a stationary axisymmetric rigidly rotating solution
with angular velocity Ω of the Einstein field equations for a perfect fluid
exists. The solution is geodesically complete, asymptotically flat with finite
mass and angular momentum. The matter is of finite extent and has the same
equation of state and central density as the Newtonian solution.

The theorem holds also for more general equations of state. It is not clear
whether the case of positive boundary density may be treated by this method.

Heilig uses the observation of Jürgen Ehlers [21] that it is possible to
write the field equations as an elliptic system with a parameter λ = c−2 –
interpreted as the velocity of light – such that the equations for , λ → 0 give
the Newtonian equations and the limit is regular. This can be achieved by a
particular choice of unknowns for which the field equations are formulated.

We will describe the structure of Heiligs proof using the equations for-
mulated in Sect. 2.4 because these are much simpler. We want, however, to
stress that we expect that Heilig’s result could be proved more easily using
these equations, but this is not certain before all the functional analysis has
been done properly.

Let us first adapt the field equations to a rigidly rotating fluid. We write
the axial Killing vector as in (2.54)

ημdx
μ = η(cdt + φidx

i) + ηidx
i . (4.16)

The Killing equation in spacetime is equivalent to the equations (2.57–59) on
the quotient N . For a rigidly rotating perfect fluid with fluid flow vector uμ

we have
uμ = f(ξμ + Ωημ), Ω = const , uμu

μ = −c2, (4.17)

where
f−2 = e− 2U

c2 (−e
2U
c2 + c−1Ωη)2 − c−2Ω2ηlη

l . (4.18)

To obtain the field equation we replace in (2.64–66) η by c−1η and p by c−2p
to obtain from (2.46–48) using U → c−2U

D̄2U = 4πG[f2(−e
2U
c2 + c−1Ωη)2(ρ + c−2p) + 2c−2pe− 2U

c2 ]

+ c−2e
4U
c2 f2Ω2(ρ + c−2p)ηiηj h̄

ij ]e
4U
c2 − e

4U
c2 ω̄ijω̄

ij (4.19)

D̄iω̄ij = 8πGc−3e− 4U
c2 f2(−e

2U
c2 + c−1Ωη)(ρ + c−2p)Ωηj (4.20)

R̄ij = 2c−4DiUDjU − 2e
4U
c2 ω̄ikω̄j

k + h̄ije
4U
c2 ω̄klω̄

kl
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+ 8πGc−4[−2pe− 2U
c2 h̄ij + f2Ω2(ρ + c−2p)ηiηj

− h̄ijf
2Ω2(ρ + c−2p)ηlηmh̄lm] (4.21)

The above field equations have to be supplemented by the Killing equations
(2.57–2.59). The equations of motion are

∇μT
μν = 0 ⇐⇒ (c2ρ + p)f−1Dif = Dip (4.22)

For c →∞ we have from (4.18) that f2 = 1 which implies by (4.20) that
D̄iωij = 0. The staticity theorem now gives that ω̄ij = 0. Using (2.58) this
implies Di(e− 2U

c2 η) = 0. The vanishing of η on the axis implies η = 0. Using
all this the field equations reduce to

R̄ij = 0 , D̄2U = 4πGρ (4.23)

Therefore the metric on N is flat. Using limc→∞(c2Dif) = −Di(U− 1
2Ω

2ηlη
l)

the equation of motion become the Newtonian equation

−ρDi(U − 1
2
Ω2ηlη

l) = Dip (4.24)

equation (ηlη
l = x2 + y2 in Cartesian coordinates).

As discussed in Sect. 2.5 for the static case, the field equations become
again a quasilinear elliptic system for U,Zij , ϕi in harmonic coordinates
(∇μ∇μt = 0 ⇐⇒ D̄iϕi = 0, ∇μ∇μxi = 0 ⇐⇒ D̄2xi = 0). Namely, the condi-
tion that the time function is harmonic turns the left-hand side of Equ.(4.20)
into an elliptic operator acting on ϕi. Harmonicity of xi has the same effect
on the left-hand side of Equ.(4.21). Theorem 4.1 of Heilig [30] can be adapted
to show that for small λ,Ω a solution of the reduced field equation exists near
the Newtonian solution. Such a solution satisfies only the harmonicity condi-
tion if the equation of motion holds. So, this has to be solved simultaneously.
This is possible because given a equation of state (4.22) can be integrated
such that the matter quantities can be expressed in terms of the geometrical
quantity f . Therefore the following iteration procedure is well defined: begin
with a Newtonian solution U0, p0; choose some λ,Ω and use ρ0, p0, U0 as a
source in the field equations in harmonic coordinates to obtain U1, Z1ij , ϕ1

i.
Calculate f from U1, Z1ij , ϕ1

i, λ,Ω and determine p1 from the equation of
motion. Then one solves again the field equation with the new source and
so on. Heilig has shown that for sufficiently small λ and Ω such an iteration
converges in his variables. It should also converge in the variables used here.

It is remarkable that we have used ηidx
i = xdy− ydx as a given field. At

the end one has to check that the solution is axisymmetric and satisfies the
harmonicity condition.

Note that only for λ = c−2 with some fixed value of the velocity of light
in some units the above field equations are Einstein’s equations. It is however
possible to reinterpret solutions with any λ as solutions of Einstein’s equation
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expressed in different units [30]. With this interpretation the theorem above
demonstates the existence of slowly – the theorem does not control the range
of ω – rotating fluid configurations.

4.3 The Neugebauer–Meinel Disk

The only known global solution describing a rotating object in Einstein’s
theory, is the relativistic analogue of the rigidly rotating Maclaurin disk in
Newton’s theory [10].

An axisymmetric surface density distribution (in cylindrical coordinates
(r, φ, z))

σ(r) = σ0

√
1− r2

r2
0

, 0 < r < a , (4.25)

generates a gravitational potential Φ(r, z), which is determined by the Poisson
integral from σ. At the disk the potential is

Φ(r, 0) =
1
2
Ω2r2 + const , 0 < r < a , Ω2 =

π2Gσ2
0

r20
. (4.26)

Outside the disk the potential can be expressed, for example, in terms of
integrals over Bessel functions.

The centifugal force acting on rigidly rotating particles balances the grav-
itational force in the disk. Therefore, we can interpret the density distribu-
tion as formed by self gravitating, rigidly rotating dust. The two parame-
ters σ0 and r0 determine such disks uniquely. The total mass of the disk is
M = 2

3πσ0r
2
0.

Neugebauer and Meinel found the relativistic analog of these disks [59].
There is a well known formalism available in General Relativity to de-

scribe matter surface distributions [31]. In the particular case of a reflection
symmetric disk, we have to find solutions of the stationary vacuum field
equations, defined outside the disk such that the difference of the normal
derivatives of the metric at of the disk have a certain algebraic structure [31].

The general stationary axisymmetric metric can be parametrized as

ds2 = e−2U
[
e2k(dr2 + dz2) + r2dφ2]− e2U (dt + adφ)2. (4.27)

The metric coefficients U, k and a depend only on r, z; the vector fields
ξμ∂/∂xμ = ∂/∂t and ημ∂/∂xμ = ∂/∂φ are Killing vector fields. We assume
that the orbits of the axial Killing vector are circles; r = 0 is the axis.

Let us assume that the disk is located at z = 0, 0 ≤ r < r0. A rigidly
rotating flow forming the disk is described by a vector field (which is defined
at the disk)

uμ = e−V (ξμ + Ωημ) , uμuμ = −1 , (4.28)

where Ω is constant. The definition of a dust disk implies that the metric
is continuous across the disk and that τμν = σuμuν , where σ is the surface
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density, satisfies τμν
;ν = 0 with respect to the Levi Civita connection of the

metric induced on the disk. As vμ = ξμ + Ωημ is a Killing vector, it holds
vμ

;μ = 0, σ,μv
μ = 0, V,μv

μ = 0 and we obtain

τμν
;ν =

(
σe−2V vμvν

)
;ν = σe−2V vμ

;νv
ν . (4.29)

Finally e2V = gμνv
μvν implies e2V 2V,γ = 2gμνv

μvν
;γ = 2vνvγ ;ν and we see

that V must be constant on a disk formed of rigidly rotating dust, V = V0.
It is natural to introduce comoving coordinates

t′ = t; φ′ = φ−Ωt , ξμ′
= ξμ + Ωημ , ημ′

= ημ , uμ′
= e−V δμ′

t′ . (4.30)

The vacuum field equations can be expressed in terms of the following quan-
tities:

e2U ′
= −ξμ′ξμ′

= e2V , a′ = −e−2U ′
ημ′ξμ′

, U ′(r, φ, z = 0) = V0 = const
(4.31)

and b′(r, z) determined by

a′
,r = re−4U ′

b′
,z , a′

,z = −re−4U ′
b′
,r . (4.32)

Using the Ernst potential f ′ = e2U ′
+ ib′ the key field equation is the semi-

linear elliptic Ernst equation [37]

Re(f ′)(f ′
,rr + f ′

,zz +
1
r
f ′

,r) = f ′2
,r + f ′2

,z . (4.33)

For a solution of the Ernst equation the integrability condition of (4.32) is
satisfied and one can solve for a′. The remaining metric coefficient k′ follows
from the equations

k′
,r = r

[
U

′2
,r − U

′2
,z +

1
4
e−4U ′

(b
′2
,r − b

′2
,z)

]
, k′

,z = 2r
[
U ′

,rU
′
,z +

1
4
e−4U ′

(b′
,rb

′
,z)

]
(4.34)

whose integrability condition is again satisfied for solutions of the Ernst equa-
tions.

We can perform an integral in the (r − z) -plane around the disk of the
integrability condition of (4.32), namely

(r−1e4U ′
a′

,r),r + (r−1e4U ′
a′

,z),z = 0 , (4.35)

which can be replaced by a surface integral. As we assume that the tangential
derivatives of the metric are continuous at the disk, we obtain at the disk

a′
,z|z=0+ = a′

,z|z=0− . (4.36)

On the other hand reflection symmetry at the disk implies

a′
,z|z=0+ = −a′

,z|z=0− (4.37)
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on the disk, hence,
a′

,z|z=0+ = a′
,z|z=0− = 0 , (4.38)

which by (4.32) implies b′ = const on the disk.
Now it is easy to calculate the second fundamental form kcd = 1

2e
Ugcd,z

of the disk z = 0 ( c, d, . . . = (t, r, φ)), because we have at the disk that
a′

,z = k′
,z = 0, as a consequence of (4.38),(4.35) and (4.34). We find

krr = −2U ′
,zgrr (4.39)

kφ′φ′ = −2U ′
,z(a

′2e2U ′
+ e−2U ′

r2) (4.40)

kt′t′ = 2U ′
,zgt′t′ (4.41)

kt′φ′ = 2U ′
,zgt′φ′ . (4.42)

Now we can check the condition for a disk of dust [31], namely

+kcd − −kcd = 2+kcd = −8π(τcd −
1
2
gcdτ

e
e ) = −8π(σucud +

1
2
σgcd) , (4.43)

which, in the primed coordinates (because of uμ′
= δμ′

t′ ), reads

kc′d′ = −8πσ(gc′t′gd′t′ + gc′d′) . (4.44)

Because of the form of the metric (4.27) in primed coordinates and by (4.39–
42), this is satisfied if we define the surface density by

σ =
1
2π

U ′
,z . (4.45)

Thus we have shown that a rigidly rotating disk of dust is determined by
a solution of the Ernst equation which satisfied at the disk U ′ = const and
b′ = const. Outside the disk the solutions of the Ernst equation must be
regular. For a well-posed elliptic problem we need furthermore asymptotic
flatness at infinity and regularity conditions at the axis.

In Newton’s theory there is a 2-parameter family of disks (4.25), (4.26). If
we use the 2-parameter group of similarity transformations – or dimensionless
quantities – we can assume r0 = 1 and σ0 = 1 and we have just one disk.

Because of the appearence of the velocity of light there is only a 1-
parameter group of similarity transformations in Einstein’s theory. Hence,
after we put r0 = 1, we expect a 1-parameter family of disk solutions.

The investigations of Neugebauer and Meinel suggest that

μ = 2ω2r2
0e

−2V0 (4.46)

is an appropriate parameter.
Neugebauer and Meinel prove by the so called inverse scattering method

of soliton physics (compare the contribution of Maison in this volume) that
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the boundary value problem for f ′ has a unique global solution provided V0
and ω are such that μ < μcrit = 4.629 . . ..

The solution f ′ can be expressed in terms of hyperelliptic theta functions
[60]. The remaining metric coefficients a′ and k′ are determined by integration
from the equations (4.32) and (4.34).

If we put the velocity of light, c, in the appropriate places we obtain the
MacLaurin disk as a Newtonian limit.

Further properties of these disks are discussed in [60].
Many global stationary solutions with disk sources may be constructed

from known stationary vacuum solutions by “cutting out” a region containing
singularities an making appropriate identifications. This method was first
used by Bicak and Ledvinka [9] to produce physically plausible sources for
the Kerr metric with arbitrary values of the parameters a,M . These disks
are made of two streams of particles circulating in opposite directions with
differential velocities. They are extending to infinity but have finite mass.
See Sect. 6 of the article by Bicak in this volume, where this procedure is
related back to the “method of images” in Newtonian galactic dynamics. In
the static case these methods yield an infinite number of such static disk
solutions. Solutions corresponding to stationary counterrotating dust disks
of finite extent have been constructed by Klein and Richter [35].

5 Global Non-rotating Solutions

5.1 Elastic Static Bodies

No doubt, Einstein’s theory should allow for the description of static, solid
bodies. It is useful to make the following distinction:

(i) small bodies, whose shape is not dominated by gravitational forces,
like a piece of sugar or an iron ball. If we ignore gravity, the structure of
the body is determined by the laws of quantum mechanics. This is true in a
Galilei invariant formulation as well as in a special relativistic one. Linear and
non-linear elasticity theory describes the deformation of such a configuration
under external forces.

Suppose we now want to add the gravitational field. This is straightfor-
ward for linear elasticity in Newtonian theory; we just have to insert the
gravitational field calculated from the Poisson integral as an external force
into the equations of elasticity.

To pass from special relativity to Einstein’s theory is more complicated.
Now the deformed configuration has to satisfy Einstein’s field equations, and
the elasticity equations are a consequence of the latter!

(ii) bodies like stars whose shape is dominated by gravitational forces.
There a relaxed state does not really exist and one has to modify the de-
sciption of elasticity. This holds in Newtonian theory as well as in Einstein’
theory.
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Elastostatics can be described in Einstein’s theory as follows [17]. The col-
lection of particles which form the body is described by the three-dimensional
“body manifold” B. The essential dynamical variable is a map Φ : M4 → B.
such that Φ−1(yi) is the world line of the particle in spacetime labeled by
yi in B. In the static case the world lines of the particles are the integral
curves of the Killing vector, and we can consider Φ as a 1-1 map N → B.
We assume that we have given on B a Riemannian metric κ̄ij . Its physical
interpretation may be different: for small bodies it describes a relaxed state;
for big bodies which go never into a relaxed state, it could be an “isotropic
state of minimal energy”.

We need now information about the energy momentum tensor of the
material. Let

Tμν = ρuμuν + pμν , pμνuν = 0 (5.1)

be such that the stress tensor pμν has only spatial components and can be
considered as a tensor on N . We can now define

eij :=
1
2
(hij − Φ∗κ̄ij) (5.2)

the “Lagrangian strain tensor”. In the Hookian approximation of elastcity
one assumes that one has given on the body B a tensor field K̄ijk� such that
after moving this object with Φ into the space N ′ one can define

ρ = ρ0 +
1
2
Kijk�eijek� (5.3)

pij = −Kijk�ek� (5.4)

as the energy and stresses of the body B in 3-space with the metric hij .
With this energy momentum tensor we consider Einstein’s field equations

as differential equations for the spacetime metric and the map Φ. No general
existence theorem is available for this problem. The only case treated so far
is the spherically symmetic one [62].

To get some feeling for these equation let us consider some further ide-
alisation. For small deformations we can linearize eij := 1

2 (hij − Φ∗κ̄ij) as
follows: Suppose that Ψε is a 1-parameter family of diffeomorphism N ′ → N ′

such that ε = 0 is the identity and Φ0 is some diffeomorphism N ′ → B. Now
we assume that ΨεΦ

−1
0 defines our deformed body and calculate the stress

tensor eij to first order in ε If we define κ0
ij = Φ0∗κ̄ij we obtain

eij =
1
2
(hij − κ0

ij + Lχκ
0
ij) =

1
2
(hij − κ0

ij + D0
(iχ

kκ0
j)k) (5.5)

Here the vector field χi is defined by the linearization of Ψε on N ′ . We see
that pij

;j = 0 leads to second order differential equations for χa.
Consider first the case of special relativity which coincides with Galilei

invariant classical mechanics in the static situation. Then we have hαβ = ηαβ
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and hij = δij . We choose Φ0 to be the identity may which discribes the
relaxed body in spacetime. With κ̄ij = δij we obtain

eij =
1
2
χ(i,j) (5.6)

This gives implies the equations of classical, linearized elastostatics [51].

0 = pij
,j = −Kijk�χk,�j (5.7)

With the appropriate symmetry and positivity conditions on Kijk� the equa-
tions are elliptic and solutions exist for various boundary conditions.

Next we want to calculate the deformation of a small elastic body by
its own gravitational field. The relaxed state is determined by solid state
physics as above. To switch on gravity we assume that we have families
gμν = ημν + Gg1

μν + G2g2
μν . . . and Tμν = T 0

μν + GT 1
μν + G2T 2

μν . . . satisfying
the field equations.

At order G0 we obtain the trivial solution if there are no forces at the
body , the density ρ0

0 is constant and the stresses vanish,i.e. χ0
a = 0. The field

equation in order G are obtained from the equations in section 2.4 with an
energy momentum tensor T 0

μν which has only a term ρ0
0 because the stresses

vanish. We obtain U1 as a solution of the Poisson equation with the source
source ρ0

0. The metric h̄1
ij remains flat in this order. The expansion of the

equation of motion in G gives to first order

p1ij
,j = −Kijk�χ1

k,�j = −ρ0
0U

1,a , ΔU1 = 4πGρ0
0 (5.8)

Hence we obtain classical elastostatics with the force deforming the body
being the gravitational force.

One might try to obtain an existence theorem for small self gravitating
elastic bodies in Einstein’s theory by an implicit function theorem argument
similarly as in the case of a rigidly rotating body (section 4.2).

5.2 Are Perfect Fluids O(3)-Symmetric?

It is intuitively “obvious” that a static, in particular non-rotating, ball of
perfect fluid, due to the absence of shear stresses should have spherical sym-
metry, and in particular the gravitational field in its exterior should be the
one described by the Schwarzschild spacetime. This result, in its most general
form, is still open in G.R. (The Newtonian case was settled in Lichtenstein [42]
and Carleman [15], see also Lindblom [44].) Rather, one has today a theorem
which is essentially a uniqueness result in the spirit of black hole uniqueness
theorems. An earlier result due to Künzle and Savage [40] states that, near a
spherical solution, there is no aspherical one with the same equation of state
and the same mass.

The following result, due to Beig and Simon [8], is a refinement of previous
work by Masood-ul-Alam [52], see also the review of Lindblom [47].
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Theorem: Let us have a static, asymptotically flat, spherically symmetric
solution to the Einstein equations with a perfect fluid and barotropic equation
of state ρ = ρ(p). (This solution is called reference spherical solution.) Let
there be given another static, asymptotically flat solution with the same
equation of state and the same value V |∂S of the Killing vector norm on
the surface ∂S of the star. Let further ρ(p) satisfy the differential inequality
I ≤ 0, specified later. Then these two spacetimes are isometric, in particular
the second one is also O(3)-symmetric.

The condition stipulating the existence of a spherical reference solution
was disposed of by Lindblom and Masood-ul-Alam [48]. The condition on the
matter, besides the one stating that ρ ≥ 0, p ≥ 0 and dρ/dp ≥ 0, is that

I :=
1
5
κ2 + 2κ + (ρ + p)

dκ

dp
≤ 0, (5.9)

where κ := ρ+p
ρ+3p

dρ
dp . One can check that it is for example satisfied for the

equation of state of a relativistic ideal Fermi gas at zero temperature, but
only up to densities of order 1015gcm−3, which is roughly the critical density
where gravitational instability sets in. It is known from numerical results [69]
that beyond that limit the uniqueness statement of the above theorem will
fail. One believes however, that sphericity will still hold.

We will here confine ourselves to an outline of the proof to the case of the
special equation of state given by [13]

ρ(p) =
1
6

ρ6/5(ρ1/5
0 − ρ1/5)−1 (ρ0 = const > 0) (5.10)

which is a relativistic generalization of the equation for a polytrope of index
5 in the Newtonian theory. The expression in (5.10) satisfies I ≡ 0. The
reference spherical solution in this case is known explicitly [7]. It has the
curious property that it is asymptotically flat, but the fluid extends to spatial
infinity.

Introducing the variable v = (−V )1/2, the static field equations for a
perfect fluid with energy momentum tensor

Tμν = (ρ + p)uμuν + pgμν (5.11)

with uμ = v−1ξμ read
D2v = 4πv(ρ + 3p) (5.12)

Rij = v−1DiDjv + 4π(ρ− p)hij (5.13)

The asymptotic conditions (2.102,104) imply that v → 1 at infinity. ¿From
the maximum principle for elliptic equations it follows that 0 < v < 1 in N .
Since the surface of the star is at infinity for the Buchdahl solution, the v|∂S ,
which is always equal to one in that case, has to be replaced by the total
mass M (see Sect. 4.1).
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Applying the contracted Bianchi identity to (5.12,13), there follows

Dip = −v−1(ρ + p)Div. (5.14)

Thus p and ρ are both functions of v and

dp

dv
= −v−1(ρ + p). (5.15)

Define the Cotton tensor of hij Bijk by

Bijk = 2D[k

(
Rj]i −

1
2
hj]iR

)
. (5.16)

With the definition
W = (Div)(Div) (5.17)

the equations (5.12,13) now imply (see Lindblom [46]) that

D2W =
1
4
v4W−1BijkB

ijk + v−1(Div)(DiW ) + 8πv(Div)(Diρ)

+
3
4
W−1(DiW )(DiW )− 8πW (ρ + p) + 16π2v2(ρ + 3p)2

− 4πv(ρ + 3p)W−1(Div)(DiW ). (5.18)

In the spherically symmetric case W = W0 has to be of the form W0 = W0(v).
The ODE resulting in that case from (5.18), has, for the equation of state
(5.10), an explicit solution given by

W0 = (1− v2)4
[

1
16M2 − πρ0

3

(
1− v

1 + v

)2
]
. (5.19)

We assume that α = 16π
3 ρ0M

2 > 1. The function W0 is defined for v ∈ [0, 1].
It is positive for v ∈ (vc, 1), with vc = (

√
α − 1)/(

√
α + 1) and W0(vc) = 0,

W0(1) = 0. Thus W0 satisfies the correct boundary condition at the central
value vc of v and at infinity.

We now define, for the given solution (v, hij), the scalar function

W̃ − W̃0 =
(

1− v2

2

)−4

(W −W0) (5.20)

and the conformally rescaled metric

h̃ij = v−2
(

1− v2

2

)4

hij . (5.21)

(The constant M occurring in W0 is taken to be the mass of the given so-
lution.) In the asymptotically flat, vacuum case discussed in Sect. 3.2 one
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finds that the metric h̃ij extends smoothly to the manifold Ñ = N ∪ {Λ},
with Λ the point at infinity. This is also true for the Buchdahl solution, and
we assume it to be true for the given, a priori non-spherical one. After some
calculations we find that

D̃2(W̃ − W̃0) =
1
4
W̃ 4B̃ijkB̃

ijk +
3
4
W̃−1D̃i(W̃ − W̃0)D̃i(W̃ − W̃0). (5.22)

Since W̃ , W̃0 also extend smoothly to Ñ , the function W̃ − W̃0 satisfies the
elliptic equation with nonnegative right-hand side on the compact manifold
Ñ . After integrating (5.22) over Ñ (or by the maximum principle) it follows
that B̃ijk is zero and

W̃ = W̃0(v). (5.23)

It then follows from [8], that the given model is isometric to the Buchdahl
solution with the same ρ0 and the same M .

5.3 Spherically Symmetric, Static Perfect Fluid Solutions

The metric for a static spherically symmetric spacetime can be written

ds2 = −c2eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θ dφ2) . (5.24)

For a derivation see [28,70]. Here c is a constant which plays the role of the
speed of light. In Appendix B of [28] it is also demonstrated that the r2 in
front of the sphere metric is no loss of generality for a static perfect fluid
with positive mass density and pressure. Hence it is impossible to have two
centers or two infinities. The field equations for a perfect fluid are

8πGc−2ρr2 = e−λ(rλ′ − 1) + 1 (5.25)

8πGc−4pr2 = e−λ(rν′ + 1)− 1 (5.26)

8πGc−4p =
1
2
e−λ

(
ν′′ +

1
2
ν′2 + r−1(ν′ − λ′)− 1

2
ν′λ′

)
(5.27)

A prime denotes a derivative with respect to r. We have written −c2ρ for the
timelike eigenvector of the energy–momentum tensor to make the compari-
son with the Newtonian equations easier. The field equation imply ‘energy–
momentum conservation’, which is a single equation for a static perfect fluid

2p′ = −ν′(p + c2ρ) . (5.28)

The first exact solution of these equation was alredy found in 1918 by Karl
Schwarzschild, the solution with constant density [37]. We have three in-
dependent ordinary differential equations for for four functions. Hence, one
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function can be specified freely. The most physical case is to prescribe an
equation of state ρ = ρ(p). Equation (5.25) can easily be integrated:

e−λ = 1− 8πG
c2

1
r

∫
r2ρ(r)dr + const . (5.29)

As we only are interested in solutions with a regular center of spherical sym-
metry we define λ as follows

e−λ = 1− 8πG
c2

1
r

∫ r

0
r2ρ(r)dr . (5.30)

The usual definition of the ’mass up to r’, namely

m(r) = 4π
∫ r

0
r2ρ(s)ds (5.31)

gives

e−λ = 1− 2G
c2

m(r)
r

. (5.32)

It is also useful to introduce the following quantity which is related to the
’mean density up to r’

w(r) = r−3m(r) . (5.33)

Then (5.32) becomes

e−λ = 1− 2G
c2

r2w . (5.34)

Various forms of the equations (5.25-28) will be used. Equations (5.25), (5.26)
and (5.28) contain all the information. If we eliminate ν′ then (5.26) and
(5.28) imply the Tolman–Oppenheimer–Volkoff equation [75]

p′ = −Gr

(
1− 2G

c2
r2w

)−1 (
4πp
c2

+ w

) ( p

c2
+ ρ

)
(5.35)

If an equation of state is given we can integrate (5.28)

ν(r) = −
∫ p(r)

p0

2dp
p + c2ρ(p)

+ constant (5.36)

In this formula p0 denotes the central pressure. If we add the definition of
w then (5.35) and (5.33) form an integro-differential system. Differentiating
(5.33) we obtain

w′ =
1
r
(4πρ− 3w) (5.37)

In [65] the following theorem is proved.
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Theorem: Let an equation of state ρ(p) be given such that ρ is defined for
p ≥ 0, non-negative and continuous for p ≥ 0, C∞ for p > 0 and suppose
that dρ/dp > 0 for p > 0.

Then there exists for any value of the central density ρ0 a unique inexten-
sible, static, spherically symmetric solution of Einstein’s field equation with
a perfect fluid source and equation of state ρ(p). The matter either has finite
extent, in which case a unique Schwarzschild solution is joined on as an ex-
terior field, or the matter occupies the whole space, with ρ tending to 0 as r
tends to infinity.

There are two parts of the proof. The equations (5.35) and (5.37) form a
system of ordinary differential equations for p(r), w(r). However, the system
is singular at r = and the first step is to demonstrate that for each value
of the central density there is a unique solution such that the spacetime is
regular at the center. This is shown in [65] or in [50]. This solution defines a
neighborhood of a regular center and can be extended as long as (1− 2G

c2 r2w)
remains positive. This can be seen as follows.

Introduce the variables first used by Buchdahl [13]

y2 = 1− 2G
c2

r2w , ζ = eν/2 , x = r2 (5.38)

Rewriting the equations in these variables and eliminating p in 5.26) and
(5.28) gives an equation which is linear in ζ and w,

(1− 2G
c2

xw)ζ,xx −
G

c2
ζ,x(w + xw,x),x −

G

2c2
w,xζ = 0 (5.39)

or
(yζ,x),x −

G

2c2
w,xζ

y
= 0 (5.40)

Let 0 ≤ x < x0 be an intervall such that y2 = (1 − 2G
c2 xw > 0 and p > 0. As

the density does not increase outwards we have w,x ≤ 0. Therefore

(yζ,x),x ≤ 0 (5.41)

The equation (5.26) can be rewritten as

yζ,x =
ζ

y

G

2c2
(w +

4π
c2

p) . (5.42)

¿From (5.41) and (5.42) we obtain the inequality

y ≥ w + 4πp/c2

w0 + 4πp0/c2
. (5.43)

Hence, we see that y cannot vanish before p.
Suppose p(xb) = 0. Then we call the corresponding rb the radius of the

star. The Schwarzschild solution is given in the form e−λ = eν = 1−A/r for
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some constant A. Hence, we determine a unique exterior field by the condition
A = ( 2G

c2 )m(rb). In this way the matter solution and the outside solution are
joined only in a C0-fashion because the boundary density may be non-zero. If
we introduce Gauss coordinates relative to the hypersurface p = 0 the metric
is C1. It is obvious that this metric cannot be extended because the area of
the group orbits r = constant grows from 0 to infinity.

Let us now consider the second possibility that p(x) > 0 for all x. Because
p(x) is monotonically decreasing for x → ∞, limx→∞ p(x) = p∞ exists. This
implies that p′ tends to 0 for x →∞. Since y ≤ 1, (5.35) then implies p∞ = 0
and hence, using the equation of state, that ρ → 0 as x → ∞. As before the
spacetime is not extensible.

This completes our outline of the proof. It shows in particular that for for
ρ(p) with ρ(0) = ρb > 0 the radius of the star has to be finite.

There are various exact global solutions known. (For a useful list of such
solutions including a discussion of their physical acceptability has been given
by Delgaty and Lake [19].) For the 1-parameter family of equations of state
given by Equ. (5.10) the whole 1-parameter family of solutions is known. A
2-parameter family of equations of state of interest for the issue of section 3.1
is investigated by Simon [72]; all the corresponding exact solutions are given.

There are some conditions on the equation of state known, which allow
to decide whether the radius of the star is finite or infinite in the case of
vanishing boundary density ρb. In [65] it is shown that the radius of the star
is finite if

∫ p0

o
dp/ρ(p)2 is finite. Conversely,

∫ p0

o
dp/(ρ(p)c−2p < ∞ implies

that the matter distribution is infinitely extended. Both conditions depend
only on the behaviour of the equation of state near the boundary p = 0.
Makino [50] gives conditions for a finite radius in cases which are not covered
by the above. He shows in particular, that for polytropic equations of state,
p = const.ργ with 4/3 < γ < 2 the radius is finite.

For finite distributions “Buchdahl’s inequality” holds [13].

Theorem: For finite distributions with non-negative density and a monotonic
equations of state there holds

1− 2G
c2

M

rb
>

1
9

. (5.44)

Proof: To obtain the inequality one compares the solution with a solution of
constant density ρ, an interior Schwarzschild solution. Equ. (5.40) implies for
this solution (written with an overbar) that

(ȳζ̄,x),x = 0 =⇒ ȳζ̄,x = a = constant (5.45)

We normalize ζ by the condition that at the boundary we have ζb = yb. Then
we find a if we rewrite (5.26) in the new varables

8πG
c2

p = 4y2 ζ,x

ζ
− 2G

c2
w (5.46)
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and evaluate it at the boundary as a = 2G
c2 w̄.

Then (5.45) can be integrated with the result

ζ̄(x) =
1
2

(
1 + 2ζ̄(0) +

√
1− 2G

c2
xw̄

)
(5.47)

Now (5.41) implies
yζ,x > (yζ,x)b = ȳζ̄,x (5.48)

As ȳ > y we obtain

ζ,x ≥ ζ̄,x =
1
2

(
1 + 2ζ̄(0) +

√
1− 2G

c2
xw̄

)
(5.49)

As ζ̄ is positive we obtain at the boundary

yb ≥ −1
2
yb +

1
2

(5.50)

which is (5.44).
Buchdahl’s inequality show that one can pack only a certain mass into a

given fixed radius. The physical reason is that the pressure is also a source
of the gravitational field. In Newton’s theory there are constant density balls
with a fixed radius for arbitrary density. In Einstein’s theory the central
pressure diverges if the density approaches some maximum value.

In [1] an analogue of Buchdahls inequality is derived for distributions in
which the the density is only assumed to be positive. There holds 1− 2G

c2
M
rb

>
0.

Another important topic are bounds on the total mass of the system.
Suppose we know the equation of state only for ρ < ρ0. Then we can estimate
the mass and radius of a core in which the density is greater ρ0 as follows:
Clearly, m(r0) > 4π

3 ρ0(r0)3; because of y > 0 we have also m(r0) < c2

2Gr0.
Hence the possible cores occupy a compact part of the m(r0)-r0- plane. Taking
intial values from this part one can numerically integrate outwards using the
known equation of state, until the pressure vanishes. This was done in [27] for
ρ0 = 5.1×1014g/cm3 and with a certain realistic equation of state for smaller
densities. All configurations had a total mass smaller then 5M�. It is quite
remarkable the the knowledge of the equation of state for a finite density
range allows to show such a bound on the total mass, assuming nothing but
the monotonicity of the equation of state in the unknown density range. This
is not possible in Newton’s theory.

In the special case of bodies with a sharp edge, i.e ρb > 0, we can combine
the Buchdahl inequality (5.44) with the estimate M = m(rb) ≥ 4πρbr

3
b to

obtain the mass bound

M ≤
(

2
3

)3 (
3c6

4πG3ρb

)1/2

. (5.51)
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Let us finally compare with Newton’s theory. In (5.35) it is almost obvious
that for c → ∞ one obtains the Newtonian equation for the pressure. The
relativistic corrections show how ”the pressure enters in the active and passive
gravitational mass”. The first factor describes an effect of the geometry. Static
fluid ball are the simplest examples of families of relativistic solutions with a
Newtonian limit [21].

5.4 Spherically Symmetric, Static Einstein–Vlasov Solutions

In recent years existence and further properties of solutions of Einstein’s
field equations for a collisionless gas have been shown [64]. The Vlasov–
Einstein system determines the spacetime metric and the distribution func-
tion f(xμ, pμ) describing the particles.

pμ∂xμf − Γμ
νσp

νpσ∂pμf = 0

Tμν =
∫

pμpν |g|1/2 d
4p

m
(5.52)

Gμν = 8πTμν .

In the static spherically symmetric case and for the metric (5.24), these equa-
tions reduce to (r= |xi|, vi are the spatial frame components of pα)

vi

√
1 + v2

∂xif −
√

1 + v2ν′ x
i

r
∂vif = 0 (5.53)

8πGc−2ρr2 = e−λ(rλ′ − 1) + 1 (5.54)

8πGc−4pr2 = e−λ(rν′ + 1)− 1 (5.55)

where
ρ(x) = ρ(r) =

∫
R3

f(xi, vi)
√

1 + v2dv , (5.56)

p(x) = p(r) =
∫

R3
f(xi, vi)

(
xivi

r

)
dv√

1 + v2
. (5.57)

The distribution function is assumed to be spherically symmetric.
Rein and Rendall [64] show the existence of asymptotically flat solutions,

regular at the center, with finite total mass and finite extension of the mat-
ter and isotropic pressure. It is also possible to construct solutions with
anisotropic pressure; Furthermore shells of finite extent of matter around
a regular center or a black hole can be constructed [63].
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34. Kennefick, D., Murchadha, N.Ó (1995): Class. Quantum Grav. 12, 149
35. Klein, C., Richter, O. (1999): Phys. Rev. Lett. 83, 2884
36. Kobayashi, S., Nomizu, K. (1969): Foundations of Differential Geometry, Vol-

ume I (Interscience, New York)
37. Kramer, D., Stephani, H., MacCallum, M., Herlt, E. (1980): Exact Solutions of

Einstein’s Field Equations (VEB Deutscher Verlag der Wissenschaften, Berlin)
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Gravitational Lensing
from a Geometric Viewpoint
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Abstract. The theory of gravitational lensing is discussed in a Lorentzian manifold
setting. To that end we fix a point p (observer at a particular instant) and a time-
like curve γ (worldline of a light source) in a 4-dimensional Lorentzian manifold
(spacetime) and we investigate how many past-pointing lightlike geodesics (light
rays) go from p to γ. If there is more than one such geodesic, then we are in a
gravitational lensing situation. Among other things, we study the geometry of light
cones and we use the theory of conjugate points and cut points to find necessary
and sufficient criteria for gravitational lensing; we discuss a Morse theory, based on
a general relativistic version of Fermat’s principle, to characterize the number of
images for gravitational lensing situations in globally hyperbolic spacetimes; and
we discuss gravitational lensing in asymptotically simple and empty spacetimes,
giving an elementary proof for an odd number theorem in this situation.

1 Introduction

According to general relativity the path of a light ray is influenced by the
gravitational field of massive objects. The verification of this effect during
a total Sun eclipse in the year 1919 made Einstein’s theory famous all over
the world. It was soon realized by Eddington [12] and Chwolson [10] that, in
principle, this deflection of light by massive objects might lead to the effect
that an observer sees two or more distinct images of one and the same light
source. Also, Chwolson [10] mentioned the possibility that, in cases of axial
symmetry, the light source might appear as a ring around the deflecting mass.
Those effects are usually summarized under the name gravitational lensing.
For many decades it was not clear if gravitational lensing is, indeed, realized
in Nature. It was not before 1979 that a promising candidate for gravitational
lensing was found. In this year Walsh, Carlswell and Weyman [81] published
their results on the double quasar 0957 +561 and suggested that in this case
we see two images of one and the same quasar, produced by the gravita-
tional field of an intervening galaxy. Since then, a great number of further
gravitational lens candidates have been found, including multiple quasars,
radio rings and luminous arcs. This has led to the effect that gravitational
lensing is one of the most rapidly developing field in astronomy, in particular
from an observational but also from a theoretical point of view. There is a
comprehensive monograph on the subject by Schneider, Ehlers and Falco [70]

B.G. Schmidt (Ed.): LNP 540, pp. 373−425, 1999.
© Springer-Verlag Berlin Heidelberg 1999
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and there is a great number of review articles, including a regularly updated
electronic review by Wambsganss [82] from which literature, in particular on
the present status of observations, can be traced.

In this article we want to approach the theory of gravitational lensing
from the viewpoint of Lorentzian geometry. This is somewhat unusual inso-
far as the majority of theoretical work on gravitational lensing is done in a
quasi-Newtonian approximation formalism which was developed, in essence,
by Sjur Refsdal in the 1960s and which is discussed in full detail, e. g., in
Schneider, Ehlers and Falco [70]. In the standard version of this approxi-
mation formalism one restricts to a purely spatial description, as opposed
to a spacetime description, and light rays are represented by straight lines
in Euclidean 3-space, with the only exception that they may have a sharp
bend when passing through a particular plane which is known as the “de-
flector plane”. (There is also a variant with several deflector planes.) This
formalism has proven very powerful for calculating particular models. On
the other hand, one should keep in mind that it is only an approximation.
Thus, it is perfectly fine if it is used for quantitative calculations where the
approximative assumptions are satisfied, but it is not the complete story as
far as qualitative aspects of the theory are concerned. Gravitational lensing,
by its very nature, is a general relativistic effect and it can be understood
only on the basis of a 4-dimensional spacetime description, i. e., in terms of
Lorentzian geometry.

Therefore, the following strategy seems to be appropriate for studying
the theory of gravitational lensing. In the beginning one should concentrate
on getting an understanding of gravitational lensing in terms of spacetime
diagrams and becoming familiar with the 4-dimensional geometry involved.
The present article tries to serve this purpose. After that, one should study
the passage to the quasi-Newtonian formalism which involves several ap-
proximative assumptions. Some of these assumptions are easily understood,
such as that the gravitational field should be weak and that the deflection
angles should be small. However, in addition one needs some assumptions
whose interpretation is less obvious. So the passage to the quasi-Newtonian
approximation is, in fact, a rather subtle issue. These problems are carefully
discussed by Seitz, Schneider and Ehlers [73], related material can also be
found in Schneider, Ehlers and Falco [70] and in Sasaki [68]. In the third step
one is then ready to study how the quasi-Newtonian formalism is operating.
This is what is done in the majority of the theoretical literature on gravita-
tional lensing and what is reviewed in full detail, e. g., in Schneider, Ehlers
and Falco [70]. For mathematical aspects of gravitational lensing in the quasi-
Newtonian approximation formalism, in particular for the theory of caustics,
we also refer to a forthcoming book by Petters, Levine and Wambsganss [65].

For our plan to study gravitational lensing in a Lorentzian geometry set-
ting we assume that light propagation can be described in terms of rays and
we restrict to light rays in vacuo, i. e., we exclude the case that the light rays
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are influenced by a medium, e. g., in terms of diffraction, on their way from
the light source to the observer. Moreover, we shall restrict to the case that
both the observer and the light source may be considered as pointlike. We are
then naturally led to studying past-pointing lightlike geodesics (light rays)
from a point (observer at a particular instant) to a timelike curve (worldline
of the light source) in a Lorentzian manifold (spacetime). If there are two
or more such geodesics, then we are in a gravitational lensing situation. In
essence, our analysis will be kinematical throughout, although Einstein’s field
equation will be mentioned occasionally.

The article is organized as follows. In Sect. 2 we recall some basic notions
from Lorentzian geometry and fix some conventions as to terminology and
notation. These conventions will be essential for understanding the following,
so the reader is kindly requested to read this section carefully. In Sect. 3
we study gravitational lensing situations in arbitrary spacetimes. In Sect. 4
we specialize to the case of globally hyperbolic spacetimes and in Sect. 5 we
further specialize to asymptotically simple and empty spacetimes.

Many mathematical results will be simple corollaries of standard theorems
from Lorentzian geometry which can be found in the books by Hawking
and Ellis [29], Wald [80], O’Neill [50], or Beem, Ehrlich and Easley [4]. For
theorems proven in one of those books the proof is not repeated here unless
in cases where this seemed instructive. Also, the material on Morse theory, i.
e., Sects. 3.5 and 4.2, turned out to be so technical that for proves the reader
must be refered to the quoted original papers. In all other cases proves are
given in (hopefully) sufficient detail.

2 Some Basic Notions of Spacetime Geometry

According to general relativity, a spacetime is a 4-dimensional Lorentzian
manifold. For convenience we shall consider only Lorentzian manifolds that
are time-orientable, i. e., we assume that it is possible to distinguish between
future and past in a globally consistent way. More precisely, we use the fol-
lowing definition.

Definition 1. A spacetime is a triple (M, g, T +) where
(a) M is a connected 4-dimensional real C∞ manifold whose topology satis-
fies the axiom of second countability and the Hausdorff axiom and is, thus,
paracompact;
(b) g is a Lorentzian metric on M, i. e., a symmetric covariant second rank
C∞ tensor field which has signature (+,+,+,−) at each point;
(c) T + is a time orientation for (M, g), i. e., the set of timelike tangent vectors
{X ∈ TM| g(X,X) < 0} consists of exactly two connected components and
T + is one of those components.
For a spacetime (M, g, T +), we denote the Levi-Civita connection of g by ∇
and we denote the Riemannian curvature tensor of ∇ by R.
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A linear subspace N of the tangent space TpM is called (i) spacelike if g
is positive definite on N , (ii) lightlike if g is positive semi-definite but not
positive definite on N , and (iii) timelike otherwise. The property of being
spacelike, lightlike or timelike is assigned to a vector in TpM if the linear
space generated by this vector has the respective property, to a differentiable
curve if its tangent vector has the respective property everywhere and to a
submanifold of M if its tangent space has the respective property everywhere.
Moreover, a differentiable curve is called causal if its tangent vector is either
timelike or lightlike at each point.

Here and in the following, by a curve in M we mean a map from a real
interval I into M. (A “real interval” is a connected subset of R that contains
more than one point. I may be open, half-open or closed.) Quite generally,
we shall use a lower case greek letter for a curve, e. g., γ : I −→ M, and
we shall use the corresponding boldface letter for the image set of this curve,
e. g., γ = {γ(s) | s ∈ I }.

By a geodesic we always mean what is more fully called an “affinely para-
metrized geodesic”, i. e., a C∞ curve λ : I −→M such that ∇λ′λ′ = 0. This
leaves the freedom of changing the parameter affinely, I −→ Ĩ , s �−→ as + b
with a, b ∈ R, a �= 0. However, when counting geodesics we shall tacitly
identify two geodesics if one is a reparametrization of the other. That is to
say, in a sentence such as “There are two geodesics λ1 and λ2 . . . ” it goes
without saying that λ2 is not just a reparametrization of λ1. Please note
that, according to this rule, a periodic geodesic gives rise to infinitely many
geodesics between any two points on this geodesic.

Our study will be concentrating upon lightlike geodesics, which are to
be interpreted as light rays. It is well-known and easily verified that under
a conformal transformation g �−→ e2f g of the metric g, with an arbitrary
C∞ function f : M −→ R, the lightlike geodesics undergo a reparametriza-
tion but are unchanged otherwise. Since we are interested only in the paths
of lightlike geodesics and not in their particular parametrizations, we could
therefore allow for arbitrary conformal transformations of the metric, i. e.,
we could prescribe a conformal equivalence class rather than a particular
metric. However, we shall not do so because we want to occasionally discuss
additional assumptions on the spacetime which are not conformally invariant,
such as, e. g., conditions on the Ricci tensor.

The totality of all geodesics issuing from a point p give rise to the expo-
nential map

expp : Wp −→M . (1)

This map is defined on a subset Wp of the tangent space TpM by setting
expp(X) = λ(1) where λ : [0, 1] −→ M is the geodesic with λ′(0) = X.
It is well known that the maximal domain Wp on which this map is well-
defined is an open subset of TpM that contains the origin. In general, Wp

is not all of TpM, thereby reflecting the fact that a geodesic may arrive at
the “boundary” of M (using the word “boundary” in a colloquial manner)
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before its affine parameter has reached the value 1. In general, the map expp

need not be injective on its maximal domain Wp, thereby indicating that
the geodesics isssuing from p may reconverge and, eventually, intersect each
other. However, it is well known that there is an open neighborhood Wo

p of
the origin in TpM such that the restriction of expp to Wo

p is a diffeomorphism
onto its image. Thus, sufficiently short pieces of geodesics issuing from p do
not intersect. A neighborhood of p that is contained in the image of Wo

p under
expp is called a normal neighborhood.

This notion can be used to assign the property of being timelike or causal
to continuous curves which need not be differentiable. A curve γ : I −→ M
is called timelike (or causal, respectively) if it is continuous and if each s ∈ I
has a neighborhood Ĩ in I such that for any two parameter values s1 and
s2 in Ĩ there is a timelike (or causal, respectively) geodesic from γ(s1) to
γ(s2) which is completely contained in a normal neighborhood of γ(s). If
this geodesic is future-pointing whenever s1 < s2, γ is called future-pointing;
otherwise γ is called past-pointing.

Moreover, we shall frequently use the following standard definition.

Definition 2. For a point p in a spacetime (M, g, T +), we define the chrono-
logical future I+(p) (and the chronological past I−(p), respectively) of p as
the set of all points q ∈M that can be reached from p along a future-pointing
(or past-pointing, respectively) timelike curve.

I+(p) and I−(p) are obviously open subsets of M for every p ∈M. However,
as long as the causal structure of spacetime has not been restricted this is
more or less the only statement that can be made about these two sets. The
following causality notions will be of relevance for us.

Definition 3. (a) A spacetime (M, g, T +) is called causal at a point p ∈M
if there is no closed causal curve through p.
(b) A spacetime (M, g, T +) is called future-distinguishing (or past-distin-
guishing, respectively) at p if every neighborhood U of p contains a neigh-
borhood V of p such that a future-pointing (or past-pointing, respectively)
causal curve from p that has left U cannot reenter V. An equivalent condi-
tion is that the equation I+(p) = I+(q) (or the equation I−(p) = I−(q),
respectively) implies the equation p = q.
(c) A spacetime (M, g, T +) is called strongly causal at p if every neigh-
borhood U of p contains a neighborhood V of p such that no causal curve
intersects V more than once.

It is easy to check that the strong causality condition implies both the future-
distinguishing and the past-distinguishing condition and that either distin-
guishing condition implies the causality condition. For a rather detailed dis-
cussion of these well known notions we refer to Hawking and Ellis [29], to
O’Neill [50] and to Beem, Ehrlich and Easley [4]. In particular, illustrative
examples of spacetimes satisfying some causality assumptions but violating
others are given in Figs. 37 and 38 of Hawking and Ellis [29].
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3 Gravitational Lensing in Arbitrary Spacetimes

In this section we discuss the geometry of gravitational lensing situations
in arbitrary spacetimes (M, g, T +). To that end we fix a point p ∈ M and
a timelike C∞ curve γ : I −→ M. We interpret p as an event where an
observation takes place (i. e. “an astronomer here and now in his observa-
tory”) and we interpret γ as the worldline of a light source, e. g., a distant
quasar. This interpretation is, of course, based on the assumption that the
spatial extension of the light source and of the observer can be neglected,
i. e., that they can be considered as pointlike. Our assumption of γ being
timelike means that the light source moves at a subluminal velocity. There
is no need to specify the parametrization of γ (e. g., to proper time para-
metrization g(γ′, γ′) = −1) since we are primarily interested in the set γ and
not in a particular parametrization. – The question we want to discuss is the
following (see Figs. 1 and 2).

How many past-pointing lightlike geodesics are there that start at
the point p and terminate on the worldline γ ?
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Fig. 1. This is a typical spacetime diagram of a multiple imaging situation. In
correspondence with the three past-pointing lightlike geodesics from p to γ, an
observer at p would see three images of a light source with worldline γ, as indicated
in the insert. Actually, one of the three images is hidden behind the deflector if the
latter is non-transparent.

According to the rules of general relativity, every lightlike geodesic can be
interpreted as a light ray traveling under the influence of gravity alone. (As
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outlined in the Introduction, we shall not be concerned with light rays influ-
enced by a medium throughout this text.) Thus, each past-pointing lightlike
geodesic from p to γ gives rise to an image of the light source γ at the ce-
lestial sphere of the observer p. To justify this interpretation one may view
each lightlike geodesic as representing a thin bundle of almost parallel light
rays which is focused by the observer’s eye lense onto his or her retina. – The
following cases are to be distinguished.

Case A: There is no past-pointing lightlike geodesic from p to γ. Then the
observer at p does not see any image of the light source γ. Situations
of this kind are far from being unusual. They may occur even for an
inextendible worldline γ in Minkowski space, viz., if γ asymptotically
approaches the past light cone of p. Please note that, in general, the non-
existence of a past-pointing lightlike geodesic from p to γ does not imply
the non-existence of a past-pointing causal curve from p to γ. In other
words, even if p cannot receive a freely traveling light ray from γ it is very
well possible that p can be causally influenced by γ. The Gödel cosmos
provides an interesting example of this kind, see, e. g. Hawking and Ellis
[29], Sect. 5.7. In this spacetime any two points can be joined by a past-
pointing causal curve; however, the lightlike geodesics issuing from some
point are restricted to a cylindrical region.

Case B: There is exactly one past-pointing lightlike geodesic from p to γ.
Then the observer at p sees exactly one image of the light source γ. This
is the situation naively taken for granted in pre-relativistic astronomy.

Case C: There are at least two but not more than denumerably many past-
pointing lightlike geodesics from p to γ. Then the observer at p sees finitely
or infinitely many distinct images of γ at his or her celestial sphere. In view
of Einstein’s field equation one may think of a heavy mass (“deflector”),
occupying a worldtube between γ and p, whose gravitational field causes a
bending of light rays. Figure 1 shows a typical three-image-configuration.
Please note that, generically, different lightlike geodesics from p to γ in-
tersect the worldline γ at different points. In other words, the various
images seen at p show the light source at different ages. Astronomers use
the term time delay for this phenomenon.

Case D: There are more than denumerably many past-pointing lightlike geo-
desics from p to γ. E. g., there may be a continuous one-parameter family
of lightlike geodesics from p to γ such that the light source γ appears at
the celestial sphere of the observer p as an arc or, in situations of axially
symmetry, as a ring, see Fig. 2. Such rings are often called Einstein rings
although Chwolson [10] and not Einstein was the first to mention this
phenomenon. We shall prove later in Proposition 12 that all members of
a continuous one-parameter family of light rays from p to γ necessarily
meet γ at the same point. In other words, all parts of such an extended
image show the light source at the same age.
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3.1 Conjugate Points and Cut Points

The notion of conjugate points is used to characterize the situation that
neighboring geodesics undergo a (partial) focusing effect. We are interested
in lightlike geodesics in a spacetime (M, g, T +) that pass through a particular
point p. (In applications to gravitational lensing this will be the point where
the observation takes place and we shall be interested in lightlike geodesics
that issue from p into the past.) In other words, we are interested in C∞

curves λ : I −→M that satisfy the conditions

∇λ′λ′ = 0 , (2)

g
(
λ′, λ′) = 0 , (3)

λ(so) = p , (4)

where so denotes a fixed parameter value so ∈ I.
To investigate the behavior of geodesics which are close to λ we consider

a one-parameter variation of λ, i. e., a C∞ map η : ]− εo, εo[× I −→M with
η(0, ·) = λ where εo is some positive real number. We assume that not only
λ but also all the varied curves η(ε, ·), for 0 < |ε| < |εo|, satisfy the three
conditions (2), (3), (4). By differentiation with respect to the variational
parameter ε this implies that the variational vector field J : I −→ TM,
which is defined by J(s) = η(·, s)′(0), satisfies the three conditions

∇λ′∇λ′J −R
(
λ′, J, λ′) = 0 , (5)

g
(
λ′,∇λ′J

)
= 0 , (6)

J(so) = 0 , (7)

see Fig. 3. For any vector field J along λ that satisfies these three condi-
tions, one may think of the “arrow-head” of J as tracing a neighboring light-
like geodesic through p in linear approximation. (5) is called the equation of
geodesic deviation or the Jacobi equation and any solution J of this equation
is called a Jacobi field along λ.

The equations (5), (6) and (7) are obviously satisfied by any multiple of
the tangent field, J(s) = f(s)λ′(s), with f(so) = 0. Such a solution of (5),
(6) and (7) is called trivial since it represents an infinitesimally neighboring
geodesic which is just a reparametrization of λ. We are now ready to define
the notion of conjugate points. For s1 ∈ I \ {so}, one says that the point
q = λ(s1) is conjugate to p = λ(so) along λ if there is a non-trivial solution J
of (5), (6) and (7) such that J(s1) is parallel to λ′(s1). It is easy to check that
the conjugacy of q to p along λ is independent of which affine parametrization
has been chosen for λ. Also, it is known that in a compact section of a lightlike
geodesic there are at most finitely many points conjugate to a given point
p , see, e. g., Beem, Ehrlich and Easley [4], Theorem 10.77. (The same result
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Fig. 3. The solutions J of (5), (6) and (7) form an “infinitesimal bundle of light
rays” around λ. The timelike dimension is suppressed in the picture.

is true for timelike geodesics as well, but not for spacelike ones. An example
where a whole interval is conjugate to a point along a spacelike geodesic
was contrived by Helfer [30]. The reader is cautioned against a proof that
conjugate points are always isolated, along any geodesic in a semi-Riemannian
manifold of any signature, suggested by O’Neill [50], Exercise 8, p. 299. This
is one of the very few mistakes in this otherwise excellent text-book; a basis
of Jacobi fields with the desired properties need not exist.)

It follows directly from the definitions that a conjugate point indicates a
partial focusing effect in the following sense. If, for a lightlike geodesic λ, the
point λ(s1) is conjugate to the point λ(so), then a one-parameter family of
lightlike geodesics issuing from λ(so) is being refocused into the point λ(s1)
to within linear approximation.

In addition, conjugate points indicate that a geodesic loses its extremizing
property, according to the following well-known proposition.

Proposition 1. Let λ : I −→ M be a lightlike geodesic in a spacetime
(M, g, T +) and consider two different parameter values so and s1 in I. If,
for some s ∈ ]so, s1[ , the point λ(s) is conjugate to λ(so) along λ, then there
is a C∞ variation of λ|[so,s1] such that all varied curves are timelike curves
from λ(so) to λ(s1). Conversely, the existence of such a variation implies
that there must be a point λ(s) conjugate to λ(so) in the half-open interval
s ∈ ]so, s1].

For a proof we refer to Hawking and Ellis [29], Proposition 4.5.11 and Propo-
sition 4.5.12. It might be helpful to consult O’Neill [50], Chap. 10, Proposition
48, in addition.

Proposition 1 says that an observer moving at subluminal velocity may
catch up with a light ray λ after the latter has passed through a conjugate
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point and that, for observers staying close to λ, this is impossible otherwise.
Here the restriction to observers staying close to λ is essential. Observers
“taking a short cut” may very well catch up with a lightlike geodesic even if
the latter is free of conjugate points. For investigating the extremizing prop-
erty of a lightlike geodesic from a global point of view, not just with respect
to neighboring curves, the notion of conjugate points is not appropriate. In-
stead, one has to consider the notion of “cut points” which was introduced in
Riemannian geometry (i. e., for positive definite metrics) by Poincaré [66] for
a special situation and by Whitehead [85] in generality. For lightlike geodesics
in a Lorentzian manifold, this notion can be introduced in the following way,
cf. Beem, Ehrlich and Easley [4].

For any two points p and q in M, we denote by d(p, q) the Lorentzian
pseudo-distance between p and q, i. e.

d(p, q) = supr
β

∫ 1

0

√ ∣∣g(β′(s), β′(s)
)∣∣ ds , (8)

where the supremum is to be taken over all causal curves β : [0, 1] −→M with
β(0) = p and β(1) = q. Owing to the well-known fact (cf. Beem, Ehrlich and
Easley [4], p. 75) that any causal curve is differentiable almost everywhere, it
is not necessary to restrict to differentiable causal curves to make sure that
the integral in (8) does exist. Whenever p and q are causally related, such
that the supremum is to be taken over a non-empty set, the existence of the
supremum is guaranteed but it may be infinite.

Now let λ : I −→ M be a past-pointing lightlike geodesic. For so and
s1 in I with so < s1, λ(s1) is called the past cut point of λ(so) along λ if
d
(
λ(so), λ(s)

)
= 0 for s ∈ ]so, s1] and d

(
λ(so), λ(s)

)
> 0 for all s ∈ I with

s > s1. Thus, the past cut point occurs where λ loses its extremizing property
among causal curves with respect to the pseudo-distance. In this situation,
for s > s1 the point λ(s) can be reached from λ(so) along a past-pointing
causal curve which is not a lightlike geodesic. By a well-known theorem (see,
e. g., Hawking and Ellis [29], Proposition 4.5.10) this implies that λ(s) can
be reached from λ(so) along a past-pointing timelike curve. Thus, beyond the
past cut point λ intersects some past-pointing timelike curve which started
together with λ at λ(so).

It is not difficult to check that the past cut point of p along λ is inde-
pendent of which past-pointing affine parametrization has been chosen for λ.
Also, it follows directly from the definition that the past cut point is unique
if it exists. The non-existence of the past cut point may have two quite dif-
ferent reasons. Either d

(
λ(so), λ(s)

)
= 0 for all s ∈ I with s > so, i. e., the

extremizing property is always preserved; or d
(
λ(so), λ(s)

)
> 0 for all s ∈ I

with s > so, i. e., the extremizing property never holds. Clearly, the latter
case is possible only if the past distinguishing condition of Definition 3 (b) is
violated. In other words, the past-distinguishing property guarantees that a
sufficiently short past-pointing lightlike geodesic is extremizing.
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There is, of course, a completely analogous definition of the future cut
point along a lightlike geodesic. However, we shall concentrate upon the past
cut point because this will be the relevant notion in view of gravitational
lensing situations.

In Riemannian geometry the notions of cut points and conjugate points
are related by the easily remembered rule: “The cut point comes first”, see,
e. g., Klingenberg [35], Proposition 2.1.7. The proof of this result is based
on the well-known fact that a sufficiently short Riemannian geodesic always
extremizes the Riemannian distance. We have just seen that for lightlike
geodesics in Lorentzian manifolds the analogous fact need not be true unless
the distinguishing property is satisfied. Therefore, the rule “The cut point
comes first” can be proven for distinguishing spacetimes only. The precise
statement reads as follows.

Proposition 2. Let λ : I −→ M be a past-pointing lightlike geodesic in a
spacetime that satisfies the past-distinguishing property at the point p = λ(so).
Assume that, for some parameter value s1 > so, the point λ(s1) is conjugate
to λ(so) along λ. Then the past cut point λ(s) of λ(so) along λ exists and it
is so < s ≤ s1.

Proof. Since the past-distinguishing property is satisfied at p, the equation
d
(
p, λ(s)

)
= 0 holds for s ∈ [ so , so + ε [ whenever ε is a sufficiently small

positive number. By Proposition 1, d
(
p, λ(s)

)
> 0 for s ∈ ] s1 , s1 + δ [ for

arbitrarily small positive δ. Thus, the past cut point must lie in the parameter
interval ]so, s1] . �

We end this subsection with a proposition saying that, under the past-
distinguishing assumption, any intersection of two past-pointing lightlike
geodesics starting from a point p is indicated by the occurence of a past
cut point on each of those geodesics, please cf. Beem, Ehrlich and Easley [4],
Lemma 9.13.

Proposition 3. Let (M, g, T +) be a spacetime that satisfies the past-distin-
guishing condition at a point p ∈ M. Assume that there is a point q ∈ M
that can be reached from p along two past-pointing lightlike geodesics. Then
the past cut point of p exists on each of those geodesics (and it comes on or
before q ).

Proof. We may parametrize the two past-pointing lightlike geodesics such
that λ1(0) = λ2(0) = p and λ1(1) = λ2(1) = q. Then λ′

1(1) and λ′
2(1) are

linearly independent since otherwise λ2 would be a reparametrization of λ1.
This follows from the uniqueness theorem for the geodesic equation and from
the fact that, owing to our past-distinguishing condition, a closed lightlike
geodesic through p cannot exist. Then, for small positive ε, the curve λ1

∣∣
[0,1]

joined to the curve λ2
∣∣
[1,1+ε] gives a causal curve which is not an (unbroken)

lightlike geodesic. By a well-known theorem (see Hawking and Ellis [29],
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Proposition 4.5.10) this implies that the point λ2(1 + ε) can be reached from
p = λ1(0) by a timelike curve, thus d

(
p , λ2(1 + ε)

)
> 0. On the other hand,

the past-distinguishing condition at p guarantees that d
(
p , λ2(so + δ)

)
= 0

for small positive δ. Hence, the past cut point of p along λ2 comes on or
before q = λ2(1). �

Moreover, one might ask if the past cut point itself can be reached from
p along a second past-pointing lightlike geodesic. A theorem to that effect
can be proven only under the assumption of global hyperbolicity and will be
postponed until Sect. 4, see Proposition 14 below. In the Riemannian case, an
analogous result holds on complete Riemannian manifolds and is the content
of the celebrated Poincaré Theorem, proven by Poincaré [66] for a special
case and by Whitehead [85] in its generality. It is this property that gave rise
to the name “cut point”.

3.2 The Geometry of Light Cones

In a spacetime, the lightlike geodesics issuing from a point p into the past
make up the socalled past light cone of p. In general, the past light cone need
not be an immersed (let alone embedded) submanifold of M, i. e., even its
local structure may be very complicated. The failure of past light cones to be
submanifolds is crucial for gravitational lensing. In this subsection we use the
notions of conjugate points and cut points to investigate whether the past
light cone is an immersed or embedded submanifold.

Please recall that the totality of all geodesics issuing from a point p are
given in terms of the exponential map (1). For our study of gravitational
lensing we are interested in lightlike geodesics issuing from p into the past.
Therefore, we restrict the exponential map to the 3-dimensional submanifold

C−
p =

{
X ∈ Wp \ {0}

∣∣ X is lightlike and past-pointing
}

(9)

of TpM. In (9) Wp ⊆ TpM denotes the maximal domain of expp . For the
sake of convenience, we introduce the abbreviation

e−
p = expp

∣∣
C−

p
: C−

p −→M (10)

for the restriction of the exponential map to C−
p . The image of this map e−

p is
the past light cone of p, i. e., the set of all events q ∈M that can be reached
from p along a past-pointing lightlike geodesic. This set determines what is
visible for an observer at p. In particular, it determines whether p observes a
gravitational lensing situation.

e−
p is a C∞ map from a 3-dimensional manifold into a 4-dimensional

manifold. Thus, at any X ∈ C−
p the rank of the differential TXe−

p cannot
be bigger than 3. If the rank is equal to 3, e−

p is an immersion at X, i. e.,
the past light cone with vertex p is an immersed submanifold near the point
e−
p (X). This is, of course, necessarily the case for vectors X ∈ C−

p ∩Wo
p , where
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Wo
p denotes the domain on which the exponential map is a diffeomorphism.

This reflects the well-known fact that the past light cone with vertex p is a
3-dimensional manifold if we restrict to sufficiently short lightlike geodesics
issuing fom p. For X ∈ C−

p \Wo
p , however, the number m = 3− rank

(
TXe−

p

)
may be bigger than 0. Comparison with the preceding subsection shows that
this is the case if and only if the point e−

p (X) is conjugate to p along the
geodesic generated by X. The number m is called the multiplicity of this
conjugate point. Since, obviously, (TXe−

p )(X) �= 0, the multiplicity m may
be either 1 or 2. It is important to realize that, in any case, the image of
the differential TXe−

p is a lightlike subspace. For a proof it suffices to realize
that (2), (6) and (7) imply g(λ′, J) = 0, so the tangent vector of λ and
all “connecting vectors” with infinitesimally neighboring lightlike geodesics
starting from the same point span a lightlike subspace. (Here we make use of
the well-known fact that a timelike vector cannot be orthogonal to a lightlike
vector, i. e., that the equations g(λ′, λ′) = 0 and g(λ′, J) = 0 imply the
equation g(J, J) ≥ 0 .) In particular, this proves the well-known fact that the
light cone is a 3-dimensional lightlike submanifold at each point where TXe−

p

has maximal rank.
The union of all points which are conjugate to p, along any past-pointing

lightlike geodesic issuing from p, is called the past lightlike conjugate locus of
p or the caustic of the past light cone of p. In other words, the caustic is the
set of all points where the past light cone fails to be an immersed submanifold
of M. At caustic points, the light cone typically forms edges or vertices whose
geometry might be arbitrarily complicated. If one restricts to caustics which
are stable against perturbations in a certain sense, then a local classification of
caustics is possible with the help of Arnold’s singularity theory of Lagrangian
or Legendrian maps, see Arnold, Gusein-Zade and Varchenko [3] or Arnold
[2]. This formalism has been applied to wavefronts in general relativity, a
notion which includes light cones as special cases, by Friedrich and Stewart
[18], by Hasse, Kriele and Perlick [28] and, in a particularly elegant way, by
Low [43]. (In [28] the proof of Theorem 4.4 is incorrect. A corrected version is
going to appear.) In the case of globally hyperbolic spacetimes the formalism
of Low even allows to tackle the problem of globally classifying the caustics
of light cones, although this has not been carried through until now. For the
sake of comparison the reader should also consult Petters’ work [62] [64] [65]
on caustics in the quasi-Newtonian approximation formalism of gravitational
lensing. Unfortunately, the subject of classifying stable caustics is so technical
that we cannot go into this matter here for lack of space.

It is important to realize that a light cone may fail to be an embedded
submanifold of M even if its caustic is empty. At the end of this subsection we
shall illustrate this claim by an example where a light cone develops transverse
self-intersections without ever failing to be an immersed submanifold of M,
see Fig. 4 below. The relevant notion for finding out whether a light cone
is an embedded submanifold is the notion of cut points, and not the notion



Gravitational Lensing 387

of conjugate points. To work this out, we have to take a closer look at the
chronological past I−(p) of a point p, please recall Definition 2.

In Minkowski space, the lightlike geodesics issuing from p into the past
make up the boundary ∂ I−(p) of I−(p). In spacetimes with a complicated
causal structure, however, those lightlike geodesics may penetrate into the
open set I−(p), i. e., the past light cone of p may have a non-void intersection
with I−(p). In spacetimes with drastic causality violations (such as, e. g.,
the Gödel cosmos, see Hawking and Ellis [29], Sect. 5.7) I−(p) may even
be all of M such that ∂ I−(p) is empty and the past light cone of p is
completely contained in I−(p). Quite generally, ∂ I−(p) can be characterized
in the following way.

Proposition 4. For any point p in a spacetime, the set ∂ I−(p) is either
empty or a 3-dimensional achronal closed embedded C 1− submanifold of M.
(A subset of a spacetime is achronal if it is impossible to connect any two
of its points by a timelike curve. A C 1− manifold is a topological manifold
whose transition maps satisfy a Lipschitz condition.)

For a proof we refer to Hawking and Ellis [29], Proposition 6.3.1. With the
Lorentzian distance function d defined by (8), we get the following result for
a past-pointing lightlike geodesic λ with λ(so) = p. A point λ(s) with s > so

is in the boundary of I−(p) if d
(
p , λ(s)

)
= 0 and it is in the open set I−(p) if

d
(
p , λ(s) > 0. Thus, the past cut point of p along a lightlike geodesic can be

characterized as the point where this geodesic leaves the boundary of I−(p)
and penetrates into the open set I−(p). The set of all past cut points of p
along lightlike geodesics through p is called the past lightlike cut locus of p.
We shall now prove that in past-distinguishing spacetimes the failure of a
past light cone to be an embedded submanifold is indicated by a non-empty
past lightlike cut locus.

Proposition 5. Assume that the spacetime (M, g, T +) satisfies the past-
distinguishing property at a point p. If the past lightlike cut locus of p is
empty, then the map e−

p defined in (10) is a C∞ embedding, i. e., the past
light cone of p is an embedded C∞ submanifold of M.

Proof. If the past lightlike cut locus is empty, Proposition 2 implies that no
past-pointing lightlike geodesic starting at p can have a point conjugate to p.
Hence, the map e−

p is a C∞ immersion. Together with the past-distinguishing
condition, the same assumption implies that such a geodesic must stay on
∂I−(p) forever, i. e., the past light cone of p must be completely contained
in ∂I−(p). But then Proposition 4 guarantees that the past light cone has
no self-intersection and no almost self-intersection. Hence, e−

p must even be
an embedding. �

In Sect. 4 below we shall prove that the converse of this proposition is true in
globally hyperbolic spacetimes, see Proposition 15. – We now illustrate the
properties of conjugate loci and cut loci with three examples.
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Example 1:
Figure 4 shows the past light cone of a point p in a spacetime with a non-
transparent deflector. To have a concrete example, the reader may consider
the spacetime metric

g = −dt2 + dz2 + dr2 + k2 r2 dϕ2 , (11)

with some constant 0 < k < 1, on M = R
2 ×

(
R

2 \ {0}
)
. Here (t, z) denote

Cartesian coordinates on R
2 and (r, ϕ) denote polar coordinates on R

2 \ {0}.
This can be interpreted as the spacetime around a static non-transparent
string, see Vilenkin [79], Hiscock [32] and Gott [24]. (Vilenkin in his pioneer-
ing paper discussed this metric in connection with the linearized Einstein
field equation; it was then realized independently by Hiscock and Gott that
Vilenkin’s results remain true even if the full Einstein equation is used.) One
should think of the string as being situated at the z-axis. Since the latter is
not part of the spacetime, it is indeed justified to speak of a non-transparent
string. It is easy to see that the metric (11) induces on each plane t = const.,
z = const. the geometry of a cone; i. e., this metric has a “conic singularity”
along the z-axis.

It is an instructive exercise to verify that in this string spacetime each past
light cone qualitatively looks like the one depicted in Fig. 4. (Clearly, in Fig.
4 one spatial dimension is suppressed. This missing dimension corresponds
to the z direction in the string example. The fat vertical line in Fig. 4
actually indicates that a two-dimensional world sheet has been excised from
spacetime, viz., the total history of the z-axis in the string example.) The
caustic of this light cone is empty, i. e., there are no points conjugate to
p along any past-pointing lightlike geodesic from p. The past lightlike cut
locus of p, however, is not empty, thereby illustrating our earlier claim that a
light cone may fail to be an embedded submanifold without failing to be an
immersed submanifold. Moreover, Fig. 4 nicely exemplifies our general result
that each past-pointing lightlike geodesic from p enters I−(p) exactly when
passing through the cut locus.

Example 2:
We now modify Example 1 by switching to a transparent deflector. In the
case of the string metric (11) this can be done by changing the metric in the
neighborhood of the z-axis in such a way that there is no longer a singularity,
i. e., by “rounding off the tip of the cone” which represents each plane t =
const., z = const. The region around the z-axis in which the metric has been
changed can then be interpreted as the interior region of a transparent string.
The resulting light cone looks like the one depicted in Fig. 5. The fact that
now there are new lightlike geodesics (in comparison to Fig. 4) that pass
through the interior region of the deflector gives rise to the formation of
conjugate points, i. e., the light cone is no longer everywhere an immersed
submanifold of M. More precisely, the light cone develops two cuspidal edges
that meet in a so-called swallow-tail at the point denoted by q in the figure.
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in spacetimes without symmetry. Also, causality violations or a non-trivial
topological structure of spacetime (apart from a “hole” that is meant to
model a non-transparent deflector) may change the global features of light
cones dramatically.

3.3 Citeria for Multiple Imaging

We are now ready to turn to the discusssion of multiple imaging situations.
To find out how many images an observer at p would see of a light source
with worldline γ we have to determine the intersection of γ with the past
light cone of p. The following proposition shows that in past-distinguishing
spacetimes the occurence of cut points is necessary for multiple imaging.

Proposition 6. Assume that the spacetime (M, g, T +) is past-distinguishing
at a point p and that the past lightlike cut locus of p is empty. Then for every
timelike C∞ curve γ : I −→ M there is at most one past-pointing lightlike
geodesic that starts at p and terminates on γ.

Proof. By contradiction, assume that we have two past-pointing lightlike
geodesics λ1 and λ2 from p to γ. If they meet γ at the same point, Proposi-
tion 3 shows that the past lightlike cut locus of p cannot be empty. So let us
assume that the two geodesics meet γ in two different points λ1(s1) = q1 �=
λ2(s2) = q2, with q1 in the past of q2 (say). Then we can join the section of
γ between q1 and q2 to λ2 to get a past-pointing causal curve from p to q1
that is not a lightlike geodesic. By a well-known theorem (see Hawking and
Ellis [29], Proposition 4.5.10) this implies that q1 is in I−(p). Together with
the past-distinguishing assumption this makes sure that the past cut point
of p along λ1 must exist which gives the desired contradiction. �

A slightly weaker version of this result, assuming the strong causality condi-
tion rather than the past-distinguishing condition, was given in Perlick [58].

Next we give a sufficient criterion for multiple imaging. The examples
studied at the end of the preceding subsection suggest that a past light cone
forms several sheets after past-pointing light rays have passed through cut
points or conjugate points, and that this gives rise to multiple imaging situ-
ations. The following proposition puts this general idea into precise form.

Proposition 7. Fix, in an arbitrary spacetime (M, g, T +), a point p and a
past-pointing lightlike geodesic λ : I −→M with λ(so) = p. Assume that, for
some parameter s1 > so in I, λ(s1) is a conjugate point or the past cut point
(or both) of p along λ. Then, for every parameter value s ∈ I with s > s1,
there is a timelike curve γ through λ(s) that can be reached from p along at
least two past-pointing lightlike geodesics.

Proof. We first show that, for s > s1, the point λ(s) can be reached from p
along a past-pointing timelike curve. If λ(s1) is the past cut point of p along
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λ, this follows directly from the definition of cut points. If it is a conjugate
point, it follows from Proposition 1. Now we take such a timelike curve and
perturb it slightly near p. In this way we get a timelike curve that intersects
the past light cone of p in λ(s) and in another point close to p, so it can be
reached from p along two different past-pointing lightlike geodesics. �

Together with Proposition 5 this result implies that multiple imaging takes
place whenever a past light cone fails to be an embedded submanifold. This
is true, in particular, whenever a past light cone forms a caustic.

Proposition 7 can be used to prove that multiple imaging occurs in large
classes of spacetimes. E. g., it is well known that, under conditions which are
to be considered as fairly general from a physical point of view, a lightlike
geodesic must be either incomplete or contain a pair of conjugate points.
Those “fairly general conditions” are, e. g., the weak energy condition and the
socalled generic condition. We do not want to go into this matter here. We just
mention that results of this kind have played a crucial part in the development
of the Penrose-Hawking singularity theorems and we refer to the detailed
discussion in Hawking and Ellis [29], in particular to Proposition 4.4.5. We
also mention that the weak energy condition need not hold pointwise but that
some integrated version of the weak energy condition would do, see Tipler
[77], Borde [6], Roman [67] and Kánnár [34]. In view of these results it seems
justified to say that the occurence of conjugate points along lightlike geodesics
is the rule rather than the exception. But then Proposition 7 implies that the
occurence of multiple imaging is the rule rather than the exception.

One has to keep in mind that the worldline γ in Proposition 7 must be
constructed in a particular way. There is no guarantee that the real universe
for which (M, g) is a mathematical model contains a real light source (i. e.,
a galaxy or a quasar) that travels on this worldline γ. Therefore it would
be nice to have an analogous proposition in which both the point p and the
worldline γ are to be prescribed. Such a proposition holds in globally hyper-
bolic spacetimes and will be proven in Sect. 4, see Proposition 17 below.

Proposition 7, which is a fairly simple corollary of standard theorems, was
given in Perlick [58]. Already earlier, Padmanabhan and Subramanian [51]
had shown that the existence of conjugate points along a lightlike geodesic
is sufficient for multiple imaging. However, their proof is completely different
from ours and it uses a lot of additional assumptions on the topological and
causal structure of spacetime most of which slip in surreptitiously. On the
basis of these additional assumptions, Padmanabhan and Subramanian [51]
were also able to show that the existence of conjugate points along lightlike
geodesics is necessary for multiple imaging. We have already emphasized that
this is not true in arbitrary spacetimes, please recall Example 1 at the end
of the preceding subsection. We are now going to investigate topological and
causal conditions on the spacetime that allow to prove such a result.

Example 1 might suggest that in simply connected spacetimes multiple
imaging situations without conjugate points cannot occur. A more careful
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analysis shows that it is not the topology of (4-dimensional) spacetime but
rather the topology of (3-dimensional) space that matters. To make this no-
tion precise we have to consider a timelike C∞ vector field V (observer field )
on M. The existence of such an observer field is guaranteed on all of M
owing to the time-orientability assumption (c) of Definition 1, cf., e. g., Wald
[80], Lemma 8.1.1. With such a V chosen, we may call any two points of
M equivalent if they lie on a common integral curve of V . The correspond-
ing quotient space, equipped with the quotient topology, will be denoted by
SV and can be interpreted as the space with respect to the observer field
V . Please note that SV need not satisfy the Hausdorff axiom; as a counter-
example one may consider any timelike vector field on Minkowski space with
one point removed. Also, there is no guarantee that SV admits a smooth
manifold structure such that the natural projection πV : M−→ SV becomes
a submersion; as a counter-example one may consider a timelike vector field
V with an integral curve that is almost periodic. For later purpose we state
the following result.

Proposition 8. Let (M, g, T +) be a spacetime that does not contain a closed
timelike curve and let V be a timelike C∞ vector field on M. If the quotient
space SV satisfies the Hausdorff axiom, SV admits a C∞ structure such that
the natural projection πV : M−→ SV makes M into a fiber bundle over SV

with typical fiber diffeomorphic to R.

For a proof we refer to Harris [27], Theorem 2. Note that Harris’ assumption
of V being complete is unnecessary since every nowhere vanishing vector
field on M can be made into a complete vector field by multiplication with an
appropriate positive function. To prove this, one puts a complete Riemannian
metric h on M. This is possible since, by a famous theorem of Whitney [86]
(see also, e. g., Hirsch [31], p. 55) every n-dimensional paracompact manifold
can be smoothly embedded as a closed submanifold into R

2n+1; pulling back
the Euclidean metric gives the desired complete Riemannian metric. It is
then easy to check that the vector field h(V, V )−1/2 V is complete, cf., e. g.,
Abraham and Marsden [1], Proposition 2.1.21.

For the following consideration we only need the topological structure on
SV . We define for any point p ∈ M the set Sp

V , called the space visible to p
with respect to V , in the following way. We say that a point in SV is in Sp

V if
and only if the integral curve of V which is represented by that point either
passes through p or can be reached from p along a past-pointing lightlike
geodesic in M. We are now ready to formulate the desired proposition.

Proposition 9. Choose a timelike C∞ vector field V on an arbitrary space-
time (M, g, T +). Fix a point p ∈M and assume that Sp

V , the space visible to
p with respect to V , is simply connected. If the past lightlike conjugate locus
of p is empty, any integral curve of V can be reached from p along at most
one past-pointing lightlike geodesic.
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Proof. As the past lightlike conjugate locus of p is empty, the map e−
p of (10) is

an immersion. Then its image, the past light cone of p, is an immersed lightlike
submanifold of M. Since a timelike vector cannot be tangent to a lightlike
submanifold, each integral curve of V intersects the image of e−

p transversely.
Hence, the combination of e−

p with the projection πV : M −→ SV gives
a homeomorphism locally around each point, i. e., it gives a covering map
from C−

p onto Sp
V . As a covering map onto a simply connected space must

be a (global) homeomorphism, no integral curve of V can intersect the past
light cone of p more than once and the past light cone of p cannot have self-
intersections or almost self-intersections. The latter implies that e−

p is even
an embedding, i. e., it is impossible that a point can be reached from p along
two different past-pointing lightlike geodesics. �

The condition of Sp
V being simply connected prohibits, in particular, situ-

ations such as in Example 1 where a non-transparent deflector is modeled
by a hole. However, it may also be violated in situations with transparent
deflectors, viz., if the visible universe has a non-trivial spatial topology.

For some situations of interest, at least, Proposition 9 says that multi-
ple imaging requires the occurence of conjugate points. This is a valuable
result since the existence of conjugate points along a lightlike geodesic allows
to estimate the Ricci tensor along that geodesic. If we take Einstein’s field
equation into account, this estimate of the Riccci tensor can be rewritten
as an estimate on the energy density, see Padmanabhan and Subramanian
[51]. It is this observation that makes it physically interesting to investigate
whether in a multiple imaging situation conjugate points must occur.

We summarize the results found sofar in the following way. The occurence
of conjugate points or of cut points along a past-pointing lightlike geodesic is
always sufficient for multiple imaging. If the past-distinguishing condition is
satisfied at the observer’s position, the occurence of cut points is necessary as
well. If the space visible to p (with respect to an observer field) has a simply
connected topology, then the occurence of conjugate points is also necessary.

We end this subsection with a group of propositions characterizing the
special situation that a worldline γ meets the caustic of the past light cone
of p. We first show that this is an exceptional situation.

Proposition 10. Let γ : I −→ M be a timelike C∞ curve in an arbitrary
spacetime (M, g, T +). Then the set of all points p ∈M such that γ does not
meet the caustic of the past light cone of p is dense in M.

Proof. For each p in some open subset U ⊆ M, we consider the map e−
p of

(10) and identify its domain C−
p with R

3\{0}. This can be done with the help
of local coordinates in the tangent bundle. Then the assignment p �−→ e−

p

gives a continuous embedding from U into the space C1(R3 \ {0},M) of C1

maps from R
3 \ {0} into M, equipped with the weak (or compact-open)

topology. For the definition of this topology we refer to Hirsch [32], p. 34. By
the transversality theorem (see, e. g., Hirsch [32], Theorem 2.1), the maps
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which are transverse to γ form a dense subset of C1(R3 \ {0},M). Thus, the
points p for which e−

p is transverse to γ are dense in U . Please recall that,
by definition, e−

p is transverse to γ at a point q = e−
p (X) if either q /∈ γ or

the image of TXe−
p and the tangent space of γ span all of TqM. Clearly, if γ

meets the caustic of the past light cone of p at e−
p (X), transversality cannot

be satisfied since the image of TXe−
p is at most two-dimensional. �

In other words, by a “small perturbation” of the point p we can always achieve
that a given worldline γ stays away from the caustic. But then multiple
imaging situations are restricted by the following result.

Proposition 11. If, in an arbitrary spacetime (M, g, T +), a timelike C∞

curve γ : I −→M does not meet the caustic of the past light cone of a point
p, then there are at most denumerably many past-pointing lightlike geodesics
that start at p and terminate on γ.

Proof. Consider the pre-image Ap,γ = (e−
p )−1(γ) of γ under the map (10).

If γ does not meet the caustic, e−
p is an immersion at each point X ∈ Ap,γ ,

i. e., it maps a neighborhood of X in C−
p onto a 3-dimensional submanifold

which is lightlike and, thus, transverse to γ. This proves that the points in
Ap,γ are isolated, i. e., that there are only finitely many in each compact
subset of C−

p . Since C−
p � R

3 \ {0} can be covered with denumerably many
compact sets this completes the proof. �

These two propositions justify our earlier claim that for multiple imaging
situations Case C is generic and Case D is exceptional. However, again we
emphasize that these results crucially depend on our idealization of assuming
a pointlike source. They are, of course, no longer true if the worldline γ is
replaced with a worldsheet or a worldtube.

Proposition 11 implies that a Case D situation is possible only if γ meets
the caustic of the past light cone of p. In other words, if this light cone does
not develop a caustic, then it is impossible for the observer at p to see an
extended image such as an arc or a ring. We end this section by proving
our earlier claim that, in a Case D situation, all parts of an extended (and
connected) image show the light source at the same age.

Proposition 12. Let p be a point and γ : I −→ M a timelike C∞ curve in
a spacetime (M, g, T +). Let Ap,γ denote the pre-image of γ under the map
e−
p which was introduced in (10). Then each connected component of Ap,γ is

mapped by e−
p onto a single point.

Proof. Assume the image is not a single point. Then, by continuity of the
exponential map, it is a one-dimensional timelike submanifold, viz., a portion
of γ. This contradicts the fact that the image of TXe−

p is always lightlike, so
the light cone cannot contain a timelike curve. �
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3.4 Fermat’s Principle

For many applications it is useful to characterize the lightlike geodesics be-
tween a point and a timelike curve in a spacetime as the solutions of a varia-
tional problem. There are several versions of such a variational problem which
may be viewed as general-relativistic generalizations of the traditional Fermat
principle. The oldest versions, which hold on static or stationary spacetimes
only, date back to Weyl [84] and Levi-Civita [41]. They are also discussed
in several modern text-books and review articles, see, e. g., Frankel [17] or
Straumann [76] for the static case and Landau and Lifschitz [40] or Brill [8]
for the stationary case. For a discussion from a mathematical point of view
we refer to Masiello [44]. Here we want to present a more general version
of Fermat’s principle which holds on arbitrary spacetimes. Its formulation is
due to Kovner [36] and the proof that the solution curves of this variational
problem are, indeed, the lightlike geodesics was given by Perlick [55]. The
same version of Fermat’s principle is also discussed in Schneider, Ehlers and
Falco [70]. As an aside, we mention that this version of Fermat’s principle
may be generalized to the case of light rays in media, see Perlick [59] for a de-
tailed exposition, and to the case of extended (i. e., non-pointlike) observers
and light sources, see Perlick and Piccione [60]. According to the framework
of this article we shall not discuss these generalizations here.

It is our goal to characterize, in an arbitrary spacetime (M, g, T +), the
lightlike geodesics from a point p to a timelike worldline γ by a variational
principle. To that end we have to specify (i) the set of trial curves, i. e., the
set of curves among which the solutions to the variational problem are to
be sought, and (ii) the functional that is to be extremized. The set of trial
curves, denoted by C∞

p,γ henceforth, is defined in the following way.

Definition 4. Fix, in an arbitrary spacetime (M, g, T +), a point p ∈M and
an embedded timelike C∞ curve γ : I −→ M. Then C∞

p,γ is, by definition,
the set of all C∞ immersions λ : [0, 1] −→M with the following properties.
(a) λ is lightlike, i. e., g

(
λ′(s), λ′(s)

)
= 0 for all s ∈ [0, 1].

(b) λ starts at p and terminates on γ, i. e., λ(0) = p and there is a τ(λ) ∈ I
such that λ(1) = γ

(
τ(λ)

)
. Since γ is assumed to be an embedding, this defines

a unique assignment λ �−→ τ(λ).
(c) g

(
λ′(1), γ′(τ(λ))

)
< 0, where τ(λ) ∈ I is defined through (b).

Roughly speaking, the space of trial curves can be characterized as the set of
all ways to go from p to γ at the speed of light. Our decision to define all trial
curves on the interval [0, 1] is a matter of convenience only. Condition (c) of
Definition 4 restricts to future-oriented or past-oriented curves, depending on
whether γ is future-oriented or past-oriented. For applications to gravitational
lensing we are interested in the case that γ is a past-pointing parametrization
of the worldline of a light source, see Fig. 1.

Condition (b) of Definition 4 defines a map τ : C∞
p,γ −→ R. We refer to

τ as to the arrival time functional henceforth. This will be the functional to
be extremized. – Finally, we need the following definition.
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Definition 5. For a curve λ ∈ C∞
p,γ , as defined in Definition 4, a C∞ varia-

tion of λ in C∞
p,γ is a C∞ map η : ] − εo, εo[ × [0, 1] −→ M, for some εo > 0,

such that η(0, · ) = λ and η(ε, · ) ∈ C∞
p,γ for all ε ∈ ] − εo, εo[ . The vector

field X : [0, 1] −→ TM , s �−→ X(s) =
(
η( · , s)

)′(0) is called the variational
vector field of η . X is called non-trivial if X(s) and λ′(s) are non-collinear
for some s ∈ [0, 1] .

We want to prove that among all trial curves the lightlike geodesics are the
stationary points of the arrival time. To that end we shall need the following
characterization of variational vector fields.

Lemma 1. For a C∞ vector field X : [0, 1] −→ TM along λ ∈ C∞
p,γ , the

following two properties are equivalent.
(a) X is the variational vector field of a C∞ variation η of λ in C∞

p,γ .
(b) g(∇λ′X,λ′) = 0 , X(0) = 0 , and X(1)

∣∣∣∣ γ′(τ(λ)
)
.

The implication “(a)⇒(b)” is obvious since the desired properties of X follow
just by differentiating the defining properties of trial curves. For a proof of
the converse implication, which is more cumbersome, the reader is refered to
Perlick [55].

We are now ready to formulate and prove the general-relativistic Fermat
principle.

Theorem 1. (Fermat’s principle) Let (M, g, T +) be an arbitrary spacetime,
fix a point p ∈ M and an embedded timelike C∞ curve γ : I −→ M. Then
for a trial curve λ ∈ C∞

p,γ the following two properties are equivalent.
(a) λ is a geodesic or a reparametrization thereof.
(b) For all C∞ variations η of λ in C∞

p,γ , the equation d
dετ

(
η(ε, ·)

)∣∣
ε=0 = 0

holds true.

Proof. We first observe that the definition of the arrival time τ implies the
equation η(ε, 1) = γ

(
τ
(
η(ε, · )

))
for each C∞ variation η of λ in C∞

p,γ . Differ-
entiating with respect to ε and setting ε = 0 yields

X(1) = γ′(τ(λ)
) d

dε
τ
(
η(ε, · )

)∣∣∣
ε=0

. (12)

We now prove the implication “(a)⇒(b)”. By assumption, there is a C∞

function w : [0, 1] −→ R such that ∇λ′λ′ = wλ′ . Now let X be the variational
vector field of a C∞ variation η of λ in C∞

p,γ . Then we find w g(X,λ′) =
g(X,∇λ′λ′) = g(X,λ′)′ − g(∇λ′X,λ′) . The last term vanishes by Lemma 1.
Upon integration, we find

g
(
X(1), λ′(1)

)
= g

(
X(0), λ′(0)

)
exp

( ∫ 1

0
w(s) ds

)
. (13)

Since X(0) = 0, this implies g
(
X(1), λ′(1)

)
= 0. But then the desired re-

sult can be read from (12) because the timelike tangent vector to γ can-
not be orthogonal to the lightlike tangent vector to λ. – To prove the con-
verse implication “(b)⇒(a)” we define a vector field Uλ : [0, 1] −→ TM
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by parallel transporting the vector γ′(τ(λ)
)

along λ, i. e., ∇λ′Uλ = 0 and
Uλ(1) = γ′(τ(λ)

)
. Clearly, Uλ is everywhere timelike, so g(λ′, Uλ) has no ze-

ros. Now let Z : [0, 1] −→ TM be any C∞ vector field along λ with Z(0) = 0
and Z(1) = 0. We use this Z to define a new vector field X along λ by

X(s) = Z(s)−
( ∫ s

0

g(∇λ′Z, λ′)
g(Uλ, λ′)

∣∣∣
s̃
ds̃

)
Uλ(s) . (14)

With the help of Lemma 1 it is easy to verify that X is the variational vector
field of a C∞ variation η of λ in C∞

p,γ . Hence, we can read from (12) that
our hypothesis implies X(1) = 0. As Z(1) = 0 and g

(
Uλ(1), λ′(1)

)
�= 0, the

integral in (14) must vanish for s = 1. Upon integration by parts, this results
in ∫ 1

0
g
(
Z ,∇λ′

λ′

g(Uλ, λ′)

)∣∣∣
s
ds = 0 . (15)

Since Z was an arbitrary C∞ vector field along λ with Z(0) = 0 and Z(1) = 0,
the fundamental lemma of variational calculus implies that

∇λ′
λ′

g(Uλ, λ′)
= 0 , (16)

i. e., that ∇λ′λ′ is a multiple of λ′. �

Theorem 1 can be phrased as saying that among all ways to go from p to γ at
the speed of light, the light rays are characterized as the stationary points of
the arrival time τ . The analogy to the traditional Fermat principle is obvious.
For some applications it might be convenient to choose γ as parametrized
by proper time, g

(
γ′, γ′) = −1. However, Theorem 1 is true for any other

smooth parametrization as well. The arrival time functional τ : C∞
p,γ −→ R

changes, of course, if the parametrization is changed, but the new arrival time
functional has the same stationary points as the old one.

Please note that, by Theorem 1, a light ray may be a local minimum, a
local maximum or a saddle of τ . We shall see in the next subsection that,
actually, local maxima do not occur.

From Theorem 1 we can easily rederive the more special versions of Fer-
mat’s principle which are given in many text-books on general relativity.
To illustrate this claim we consider the special case of a conformally static
spacetime. More precisely, we need the following assumptions.
(a) M is diffeomorphic to S × R, with some 3-dimensional manifold S.
(b) The metric takes the form

g = e2f(x,t)
(
hμν(x) dxμ ⊗ dxν − dt⊗ dt

)
(17)

where t denotes the projection from M � S × R onto the second factor,
x = (x1, x2, x3) are coordinates on S and the Einstein summation convention
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is used for greek indices running from 1 to 3 . (Coordinates on S are used for
notational convenience only. It will not be necessary to assume that S can
be covered by a single coordinate system.)
(c) t ◦ γ is constant, i. e., γ is vertical with respect to the product structure
of M� S × R.
In this situation the spacetime geometry is time independent up to an over-
all factor e2f(x,t) and the worldline γ is at rest in the “space” S. Fermat’s
principle takes its simplest form if we use for γ a parametrization adapted to
t, i. e., dt(γ′) = 1. Since all trial curves are lightlike, we can then read from
(17) that the arrival time functional is given by

τ(λ) =
∫ 1

0

√
hμν

(
x(s)

)dxμ(s)
ds

dxν(s)
ds ds . (18)

Here s �−→ x(s) denotes the projection onto the first factor of s �−→ λ(s) ∈
M � S × R. By (18), τ(λ) is exactly the length of the projected curve
s �−→ x(s), measured with the spatial metric h = hμν(x) dxμ ⊗ dxν . Hence,
in this special case Theorem 1 says that a trial curve is a light ray if and
only if its projection to S traces out an h-geodesic. This result is due to Weyl
[84], apart from the fact that Weyl restricted to the static case, i. e., he did
not allow the function f in (17) to depend on t. There is a straightforward
generalization from the (conformally) static to the (conformally) stationary
case which is essentially due to Levi-Civita [41]. The solution curves are then
no longer h-geodesics but modified by a kind of Coriolis force. For a detailed
discussion, including several examples, the reader is refered to Perlick [56].

3.5 Morse Index Theory for Fermat’s Principle

Fermat’s principle admits several interesting applications to gravitational
lensing. E. g., Schneider [69] has shown that Fermat’s principle can be used
in the derivation of the so-called lens equation of the quasi-Newtonian ap-
proximation formalism, see also Schneider, Ehlers and Falco [70]. Again in
the quasi-Newtonian approximation, Blandford and Narayan [5] have used
Fermat’s principle to give a topological classification of images. Owing to
the approximation assumptions, in these situations it suffices to consider
Fermat’s principle on conformally static spacetimes. An application to grav-
itational lensing of Theorem 1 where the conformally static or conformally
stationary version would not do was worked out by Kovner [36]. He consid-
ered a gravitational wave sweeping over a gravitational lensing situation and
calculated, to within certain approximations, the influence of the wave on
the arrival times and on the positions of the images at the observer’s sky.
This line of thought was further developed by Faraoni [14] who assumed the
spacetime to be a first order (but non-stationary) perturbation of Minkowski
space and used a coordinate version of Fermat’s principle, given in Perlick
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[55], to calculate integral formulae for the arrival time and for the deflection
angle.

Here we want to discuss a different application of Fermat’s principle to
gravitational lensing. The basic idea is to formulate a Morse theory for Fer-
mat’s principle, in analogy to the classical Morse theory of Riemannian ge-
ometry, and to investigate the significance of the Morse relations in view of
gravitational lensing. As a first step towards this goal, we establish a Morse
index theorem for Fermat’s principle, thereby investigating whether a solu-
tion curve yields a local minimum, a local maximum or a saddle of the arrival
time functional. A full Morse theory has to presuppose a globally hyperbolic
spacetime and will be the subject of Sect. 4.2 below.

As a preparation, it is certainly useful to recall the classical Morse index
theory of Riemannian geometry which was developed by Morse [48] in the
1930s. Let p and q be two points in a Riemannian manifold (N , h), i. e.,
in a manifold with a positive definite metric. Then, among all sufficiently
regular curves α : [0, 1] −→ N with α(0) = p and α(1) = q, the geodesics
are characterized as the stationary points of the energy functional E(α) =∫ 1
0 h

(
α′(s), α′(s)

)
ds . To find out whether a geodesic α is a local minimum, a

local maximum or a saddle of E one has to calculate the Hessian Hessα(E) of
E at the point α (i. e., the “second variation”) and to determine the index and
the extended index of Hessα(E). Please recall that the index (or the extended
index, respectively) of a bilinear form is the maximal dimension of a subspace
on which this bilinear form is negative definite (or negative semi-definite,
respectively). The classical Morse index theorem says that Hessα(E) is non-
degenerate if and only if the endpoint α(1) is not conjugate to the initial point
α(0) along the geodesic α and that the extended index of Hessα(E) is equal
to the number of points α(s) , s ∈ ]0, 1] , that are conjugate to α(0) along α.
Here each conjugate point is to be counted with its multiplicity. Based on the
Morse index theorem, Morse was able to establish a number of theorems, now
summarized under the name of Morse theory, to the effect that the number
of geodesics joining two points p and q in a complete Riemannian manifold is
related to the topology of the space of sufficiently regular curves joining these
two points. Morse proved these results by considering the energy functional on
the finite-dimensional space of broken geodesics with N breakpoints between
p1 and p2, and then letting N →∞. For a detailed review of Morse’s work we
refer to Milnor [46]. Later Palais and Smale [52] [53] brought forward a fresh
approach to Morse theory by considering functionals on infinite-dimensional
Hilbert manifolds. It was then no longer necessary to approximate the space
of trial curves by N -dimensional spaces and to consider the limit N → ∞
afterwards. It is this Palais-Smale version of Morse theory we want to apply
to Fermat’s principle.

It should be mentioned that a Morse index theory for the geodesic varia-
tional problem (i. e., extremizing the energy functional between two points)
exists not only for geodesics in Riemannian manifolds but also for timelike
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and lightlike geodesics in Lorentzian manifolds, see Beem, Ehrlich and Easley
[4] for a detailed exposition. However, this is not what we are interested in.
We want to characterize lightlike geodesics between a point and a timelike
curve (not between two points), and the functional we are going to extremize
is the arrival time (not the Lorentzian analogue of the energy functional).

The following exposition closely follows Perlick [57]. It is our goal to estab-
lish a Morse index theorem for Fermat’s principle in an infinite-dimensional
Hilbert manifold setting à la Palais-Smale. To that end we have to modify
Fermat’s principle, as it was given in Theorem 1, a little bit. First, we observe
that, according to Definition 4, all trial curves λ ∈ C∞

p,γ are of class C∞. It
is well known that C∞ maps from one manifold into another do not form
a Hilbert manifold but, at the very best, a Fréchet manifold. Since this is
too weak for applying Morse theory, we shall replace the C∞ condition on
the trial curves by a Sobolev Hr condition in order to get a Hilbert mani-
fold. Second, we observe that the arrival time functional τ is invariant under
reparametrization. As a consequence, its Hessian at a solution curve λ is al-
ways degenerate because it vanishes on the infinite dimensional vector space
of trivial variational vector fields (please recall Definition 5). We shall solve
this problem by imposing a parametrization fixing condition upon the trial
curves.

To work this out we have to introduce the Hilbert manifold of Sobolev
Hr curves. For background material on this subject the reader is refered to
Schwartz [71]. The same book also contains a review of the Palais-Smale
version of Morse theory. For f1, f2 ∈ C∞(

[0, 1],Rn
)
, we define

< f1 | f2 >r =
r∑

i=0

∫ 1

0
f

(i)
1 (s) · f (i)

2 (s) ds (19)

where f
(i)
1 denotes the i-th derivative of f1 and the dot denotes the standard

scalar product in R
n. It is easy to check that this scalar product makes

C∞(
[0, 1],Rn

)
into a real pre-Hilbert space. The completion of this pre-

Hilbert space is, by definition, the Sobolev space Hr
(
[0, 1],Rn

)
. For r = 0 this

gives the real Lebesgue space L2
(
[0, 1],Rn

)
whose complex version is known

to every physicist from quantum mechanics. For integers r ≥ 1, Hr
(
[0, 1],Rn

)
can be (and will be henceforth) identified with the space of all C r−1 maps
from [0, 1] into R

n whose r-th derivatives exist almost everywhere and are
locally square integrable.

Now we introduce the notion of Hr curves in a manifold. Let M be a
real, finite-dimensional C∞ manifold whose topology satisfies the Hausdorff
axiom and the second countability axiom. Then we define

Hr
(
[0, 1],M

)
=

{
λ : [0, 1] −→M

∣∣∣ j ◦ λ ∈ Hr
(
[0, 1],Rn

) }
(20)

where j : M−→ R
n is a C∞ embedding. A well-known theorem of Whitney

[86] (see also, e. g., Hirsch [31], p. 55) guarantees the existence of such an em-



402 Volker Perlick

bedding for n ≥ 2 dim(M)+1 . It is easy to show that the set Hr
(
[0, 1],M

)
is

independent of which j has been chosen. Moreover, it is a well-known result of
Palais and Smale [53] that the inclusion map Hr

(
[0, 1],M

)
−→ Hr

(
[0, 1],Rn

)
induced by j makes Hr

(
[0, 1],M

)
into a C∞ submanifold of the Hilbert

space Hr
(
[0, 1],Rn

)
and that the manifold structure thereby established on

Hr
(
[0, 1],M

)
is, again, independent of j. Thus, we may view Hr

(
[0, 1],M

)
as an infinite dimensional real C∞ Hilbert manifold in its own right.

To define the modified space of trial curves we restrict the original space
C∞

p,γ of Definition 4 by a parametrization fixing condition. For λ ∈ C∞
p,γ

we define a vector field Uλ : [0, 1] −→ TM by parallel transporting the
vector γ′(τ(λ)

)
along λ, as in the proof of Theorem 1. Then the condition

g
(
Uλ, λ

′) = const. singles out exactly one parametrization for each trial curve.
Please note that this condition singles out an affine parametrization along
each geodesic. Now we define the modified space of trial curves in the following
way.

Definition 6. Fix a point p and a timelike embedded C∞ curve γ : I −→M.
Then the space H2

p,γ is, by definition, the set of all λ ∈ H2
(
[0, 1],M

)
with

the following properties.
(a) g(λ′, λ′) = 0 .
(b) λ(0) = p and there is a τ(λ) ∈ I such that λ(1) = γ

(
τ(λ)

)
.

(c) g(Uλ, λ
′) = const. < 0 .

It can be shown that H2
p,γ is, indeed, an infinite dimensional C∞ Hilbert sub-

manifold of H2
(
[0, 1],M

)
and that the arrival time functional τ : H2

p,γ −→ R

defined by (b) is a C∞ map. For a proof of these facts we refer to Perlick [57].
This result remains true if the H2 condition in Definition 6 is replaced with
an Hr condition for r > 2 ; it is not true, however, for r = 1. Now Fermat’s
principle, i. e., Theorem 1, can be reformulated in the following way.

Theorem 2. A curve λ ∈ H2
p,γ is a geodesic if and only if the differential of

the arrival time functional τ : H2
p,γ −→ R has a zero at λ.

The proof, which is worked out in Perlick [57], is a straightforward translation
of the proof of Theorem 1 into an H2 setting.

For the Morse index theorem we have to calculate the Hessian Hessλ(τ)
of τ at a geodesic λ. We find the following result.

Theorem 3. (Morse index theorem) Let λ ∈ H2
p,γ be a geodesic. The index

of Hessλ(τ) is equal to the number of points λ(s) , s ∈ ]0, 1[ , that are con-
jugate to λ(0) along λ. The extended index of Hessλ(τ) is equal to the number
of points λ(s) , s ∈ ]0, 1] , that are conjugate to λ(0) along λ. In both cases
conjugate points are to be counted with their multiplicities.

The proof of this theorem is given in Perlick [57]. The strategy of this proof
is to relate the second variational formula for Fermat’s principle to the sec-
ond variational formula for the geodesic variational problem. For lightlike
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geodesics, the latter is worked out in Beem, Ehrlich and Easley [4], Chap. 10.
We have already emphasized the differences between these two variational
problems. Nonetheless, their second variational formulae turn out to be es-
sentially the same. Thereby, the proof of Theorem 3 comes as a corollary of
the Morse index theorem proven in Beem, Ehrlich and Easley.

Theorem 3 has the following immediate consequences.
(a) Hessλ(τ) is non-degenerate if and only if λ(1) is not conjugate to λ(0)

along λ.
(b) The index and the extended index of Hessλ(τ) are finite for all geo-

desics λ ∈ H2
p,γ . Hence, λ cannot be a local maximum of τ .

(c) A geodesic λ ∈ H2
p,γ is a strict local minimum of τ if and only if λ

does not contain a point conjugate to λ(0)
(d) A geodesic λ ∈ H2

p,γ is a saddle of τ if it contains a point λ(s) which
is conjugate to λ(0) for some s ∈ ]0, 1[ .

In view of gravitational lensing, the index has the following interpretation.
At each conjugate point, infinitesimally neighboring light rays “cross over”
from one side of λ to the other. This is associated with a side-reversion of
the image. Thus, light rays with an even index yield a mirror image of those
with an odd image. This is observable if our pointlike light source (e. g., the
core of a galaxy) is surrounded by some non-symmetrical structure (e. g.,
irregular lobes or jets).

In Sect. 4.2 below we use the Morse index theorem to develop a full
Morse theory for light rays joining a point and a timelike curve in a globally
hyperbolic spacetime and we discuss applications to gravitational lensing.

4 Gravitational Lensing
in Globally Hyperbolic Spacetimes

We have seen in the preceding section that the geometry of multiple imaging
situations is strongly influenced by the topological and causal structure of
spacetime. Such global effects are usually ignored in the astronomical litera-
ture on gravitational lensing where, typically more implicitly than explicitly,
the deflector is assumed to be embedded in a universe without topological or
causal pathologies.

In this section we get somewhat closer to the standard astronomer’s point
of view by restricting to spacetimes without causal pathologies. More pre-
cisely, we are going to consider spacetimes that are globally hyperbolic ac-
cording to the following definition.

Definition 7. For a spacetime (M, g, T +), a subset S of M is called a
Cauchy surface if each inextendible causal curve in M intersects S in exactly
one point. A spacetime is called globally hyperbolic if it admits a Cauchy
surface.



404 Volker Perlick

The name “globally hyperbolic” was introduced by Leray [39] in 1952. It
refers to the fact that a global existence and uniqueness theorem for hy-
perbolic partial differential equations can be established only on spacetimes
with this property. Actually, our Definition 7 of global hyperbolicity does not
coincide with Leray’s original definition, but it is well known that the two
definitions are equivalent, see, e. g., Wald [80], p. 209. Basic properties of
globally hyperbolic spacetimes are also reviewed in Hawking and Ellis [29],
in O’Neill [50] and in Beem, Ehrlich and Easley [4].

One can show that a Cauchy surface S is a 3-dimensional topological
submanifold of M, see, e. g., Theorem 8.1.3 and Theorem 8.3.1 in Wald [80].
Mimicking the proof of Proposition 6.3.1 in Hawking and Ellis [29], one may
even show that S is a C 1− (i. e., Lipschitz) submanifold of M. In general, a
Cauchy surface will not be a C 1 submanifold of M.

In Sect. 3.3 we have introduced, for each timelike C∞ vector field V on
M, the quotient space SV = M/∼, where two points in M are considered
equivalent if they can be connected by an integral curve of V . We shall now
use Proposition 8 to show that in a globally hyperbolic spacetime SV comes
not only with a topological but even with a differentiable structure. To that
end, we first observe that the existence of a Cauchy surface makes sure that
there are no closed timelike curves in M. Since every integral curve of V
intersects a Cauchy surface S exactly once, the restriction of the natural
projection

πV : M−→ SV (21)

to S gives a homeomorphism from S onto SV . Since S, being a topologi-
cal submanifold of a Hausdorff space, must satisfy the Hausdorff axiom, this
proves that SV satisfies the Hausdorff axiom. By Proposition 8, there is a
C∞ structure on SV such that πV : M−→ SV makes M into a fiber bundle
over SV with fiber diffeomorphic to R. This argument implies that any two
Cauchy surfaces in M must be homeomorphic and that, for any two time-
like C∞ vector fields V and V ′ on M the quotient manifolds SV and SV ′

must be homeomorphic. According to a famous theorem of Moise [47] any 3-
dimensional topological manifold admits exactly one differentiable structure.
Hence, SV and SV ′ must even be diffeomorphic.

Geroch [20] has established the important fact that every globally hyper-
bolic spacetime admits a continuous function t : M −→ R such that the set
t−1(to) is a Cauchy surface for each to ∈ R. It is widely believed that such
a Cauchy time function t can be chosen differentiable, employing a smooth-
ing argument of Seifert [72]. However, the details of the proof have never
been worked out completely, and several dedicated experts who tried to do
so failed. In any case, every globally hyperbolic spacetime admits a continu-
ous Cauchy time function t which can be combined with the C∞ projection
πV determined by a timelike C∞ vector field V to give a homeomorphism
(π, t) : M−→ SV ×R. Hence, the topology of a globally hyperbolic spacetime
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is determined by the topology of any of its Cauchy surfaces. Note, however,
that S1×R may be homeomorphic to S2×R without S1 being homeomorphic
to S2. Therefore, the topology of a globally hyperbolic spacetime does not
determine the topology of its Cauchy surfaces. E. g., Newman and Clarke
[49] contrived a spacetime with topology R

4 that admits a Cauchy surface
which is not homeomorphic to R

3.
It is a matter of debate whether the assumption of global hyperbolicity

is to be considered as “reasonable” from a physical point of view. It is cer-
tainly true that most physicists consider the validity of a global existence and
uniqueness theorem for wave equations as a requirement any “reasonable”
spacetime should satisfy. Moreover, only globally hyperbolic spacetimes arise
from globally solving the initial value problem of Einstein’s (vacuum) field
equation. From the viewpoint of global Lorentzian geometry, however, global
hyperbolicity is a very strong assumption. In particular, any globally hyper-
bolic spacetime has to satisfy, at each point p, the strong causality condition
and, thus, the distinguishing conditions and the causality condition, recall
Definition 3. Also, it is easy to verify that removing a point, a worldline or a
worldtube from any spacetime necessarily results in a spacetime that is not
globally hyperbolic. This remark is important for gravitational lensing where
non-transparent deflectors are modeled by excising worldlines or worldtubes
from spacetime. – We summarize these observations in the following way.

In view of gravitational lensing situations, restricting to globally hy-
perbolic spacetimes means restricting to the case of a transparent
deflector in a spacetime without causality violation whose topology
is a product of space and time.

Since a Cauchy surface may have a complicated topology, the restriction to
globally hyperbolic spacetimes does not exclude universes with “handles” etc.

4.1 Criteria for Multiple Imaging
in Globally Hyperbolic Spacetimes

In Sect. 3.3 we have formulated several criteria for multiple imaging in arbi-
trary spacetimes. These results can be considerably strengthened if we restrict
to globally hyperbolic spacetimes. The reason is that light cones in globally
hyperbolic spacetimes cannot be too pathological. In particular, the following
technically important proposition holds true.

Proposition 13. For a point p in a globally hyperbolic spacetime (M, g, T +)
the past light cone of p united with {p} gives a closed subset of M.

Proof. Let qn be a sequence in the past light cone of p that converges towards
a point q �= p in M. We want to show that q is, again, in the past light cone of
p. To that end we choose a Cauchy surface S through q. This is possible since,
by the above-mentioned result of Geroch, every globally hyperbolic spacetime
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can be foliated into (continuously embedded) Cauchy surfaces. Convergence
of the qn implies that their pre-image under e−

p , using the notation of (10),
is contained in a compact subset of TpM. So, by passing to a subsequence
we find a sequence Xn in C−

p with e−
p (Xn) = qn that converges towards a

vector X in the closure of C−
p . Since q �= p, X is different from zero and,

thus, lightlike. We do not know yet if X is in the domain of the exponential
map. Let λn denote the geodesic with λ′

n(0) = Xn and λ the geodesic with
λ′(0) = X. Since S is a Cauchy surface, λn must intersect S in a point q̃n

and λ must intersect S in a point q̃. Since geodesics depend continuously on
their initial conditions, the q̃n converge towards q̃. On the other hand, the
qn converge towards q. As each geodesic λn intersects S exactly once, this is
possible only if q = q̃ which implies that q is in the past light cone of p. �

In addition, it can be shown that in the globally hyperbolic case the past light-
like conjugate locus and the past lightlike cut locus of p are closed subsets of
M, see Beem, Ehrlich and Easley [4], Propositions 9.27 and 9.29 in combina-
tion with our Proposition 13. We have already seen in Example 3 at the end
of Sect. 3.2 that this is not true without the assumption of global hyperbolic-
ity. – The following proposition says that for globally hyperbolic spacetimes
the name “cut point” is, indeed, justified because such a point indicates an
intersection of geodesics. It was already mentioned that the analogous state-
ment for complete Riemannian manifolds is known as Poincaré Theorem and
dates back to Poincaré [66] and Whitehead [85].

Proposition 14. (Poincaré Theorem for lightlike geodesics) Let p and q be
two points in a globally hyperbolic spacetime (M, g, T +). Assume that q is in
the past lightlike cut locus but not in the past lightlike conjugate locus of p.
Then there are at least two past-pointing lightlike geodesics from p to q. The
past light cone of p has a transverse self-intersection at q.

A proof can be found in Beem, Ehrlich and Easley [4], Theorem 9.15. The
light cone must have a transverse self-intersection at q since otherwise the
two lightlike geodesics would arrive with collinear tangent vectors at q. As
the assumption of global hyperbolicity excludes the possibility of having a
closed lightlike geodesic through p, this collinearity would imply that the two
geodesics are the same.

If q is in the cut locus and in the conjugate locus, then it may be impossible
to reach it from p along a second geodesic, even in a globally hyperbolic
spacetime. This is exemplified by the point q in Fig. 5. However, since a
conjugate point indicates an intersection with an “infinitesimally neighboring
geodesic” the name “cut point” might be viewed as justified in this case as
well.

Proposition 14 has the consequence that in globally hyperbolic spacetimes
Proposition 5 admits the following converse.

Proposition 15. Fix a point p in a globally hyperbolic spacetime (M, g, T +)
and assume that the map e−

p of (10) is a C∞ embedding, i. e., that the past
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light cone of p is an embedded submanifold of M. Then the past lightlike cut
locus of p is empty.

Proof. By contradiction, assume that q is the past cut point of p along some
lightlike geodesic. If q is also conjugate to p we are done since this proves
that e−

p is not even an immersion. If q is not conjugate to p, Proposition 14
implies that the past light cone of p has a self-intersection at q, so e−

p cannot
be an embedding. �

Together with Propositions 5, 6 and 7 this result implies that in a globally
hyperbolic spacetime there is a multiple imaging situation for an observer at
p if and only if the past light cone of p fails to be an embedded submanifold
of M.

Propositions 14 and 15 are not true without the assumption of global
hyperbolicity. To see this consider the light cone of Fig. 4. Divide a spherical
section of this cone which is close to p into two hemispheres and excise one of
them, together with its boundary, from spacetime. Then, if the division has
been chosen appropriately, the light cone becomes an embedded submanifold
since one half of the light rays is cut off before the light cone forms a self-
intersection. However, the cut locus remains unchanged since the remaining
light rays can be reached by the same timelike curves from p as before.

Another important feature of globally hyperbolic spacetimes is the fol-
lowing existence result for lightlike geodesics.

Proposition 16. Let p be a point and γ an inextendible timelike curve in a
globally hyperbolic spacetime (M, g, T +) such that γ∩I−(p) �= ∅. Then there
is a past-pointing lightlike geodesic λ from p to γ that is completely contained
in the boundary of I−(p). This geodesic does not pass through the past cut
point of p or through a point conjugate to p before it reaches γ.

Proof. Global hyperbolicity implies that γ cannot be completely contained
in I−(p) because it must reach every Cauchy surface in the future of p.
Therefore our assumptions imply that γ intersects ∂I−(p) in some point q.
It is well known (see, e. g., Wald [80], Theorem 8.1.6) that every point in
∂I−(p) can be reached from p along a past-pointing lightlike geodesic. This
geodesic cannot pass through the past cut point of p before it reaches q
since after passing through the cut point a lightlike geodesic stays inside the
open set I−(p). By Proposition 2 this implies that the geodesic cannot pass
through a point conjugate to p before reaching q. �

This proposition gives, in particular, sufficient conditions for the existence of
a past-pointing lightlike geodesic from p to γ that does not contain a point
conjugate to p. A similar result was proven by Uhlenbeck [78], Corollary 4.8,
with the help of Morse theory. In Sect. 4.2 we shall comment on her work in
more detail.

As a corollary of Proposition 16 we immediately get the following suffi-
ciency criterion for multiple imaging. As an illustration the reader may use
Fig. 5 with an appropriately placed worldline γ.
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Proposition 17. Let p be a point and γ : I −→M an inextendible timelike
curve in a globally hyperbolic spacetime (M, g, T +). Assume that there is
a past-pointing lightlike geodesic λ from p to γ that passes through a point
conjugate to p or through the past cut point of p (or both) before it reaches
γ. Then there are at least two past-pointing lightlike geodesics from p to γ.

Proof. The existence of the lightlike geodesic λ implies that γ intersects the
closure of I−(p). Since γ is inextendible, this means that it must intersect
I−(p). But then Proposition 16 gives a past-pointing lightlike geodesic from
p to γ which is different from λ because the latter contains a conjugate point
or the past cut point of p. �

This proposition says that, under certain assumptions, the existence of con-
jugate points or cut points along a lightlike geodesic is sufficient for multiple
imaging. Such a sufficiency criterion was already proven in Proposition 7 for
arbitrary spacetimes. The new feature of Proposition 17 is that in a glob-
ally hyperbolic spacetime the worldline γ can be freely prescribed (except
for the condition of being inextendible, i. e., “sufficiently long”). In view of
applications to gravitational lensing, this is a great advantage since a real
light source such as a galaxy or a quasar cannot be expected to travel along
a worldline that is constructed as in the proof of Proposition 7.

4.2 Morse Theory in Globally Hyperbolic Spacetimes

In Sect. 3.5 we have established a Morse index theory for Fermat’s principle.
Now we want to discuss the possibility of developing a full-fledged Morse the-
ory, relating the number of solution curves to the topology of the space of trial
curves. Whereas the Morse index theory works perfectly well on an arbitrary
spacetime, the full Morse theory requires a globally hyperbolic spacetime.
This is in analogy to the case of Riemannian geodesics where the Morse
index theory works on arbitrary Riemannian manifolds but the full Morse
theory has to presuppose a complete Riemannian manifold.

For the geodesic problem on complete Riemannian manifolds, Morse the-
ory exists in two versions. The first version, invented by Morse [48] in the
1930s and nicely reviewed by Milnor [46], considers for the space of trial curves
the finite dimensional manifold of broken geodesics between two points with
N breakpoints. For the final results one has to consider the limit N → ∞ .
The second version, brought forward by Palais and Smale [52] [53] in the
1960s, considers for the space of trial curves the infinite dimensional Hilbert
manifold of H1 curves between two points. (For the notion of Hr curves please
recall Sect. 3.5.) Both versions have been carried over to general relativity.
For Lorentzian manifolds, the most natural analogue of the geodesic problem
in complete Riemannian manifolds is the timelike geodesic problem in glob-
ally hyperbolic spacetimes. A Morse theory for this situation was developed
independently by Uhlenbeck [78] and Woodhouse [87] who both used finite



Gravitational Lensing 409

dimensional approximation techniques in the spirit of Morse and Milnor. An
attempt to find an infinite dimensional Hilbert manifold version, in the spirit
of Palais and Smale, was brought forward by Everson and Talbot [13] but,
unfortunately, turned out to be fatally flawed, see Erratum to [13]. In any
case, this timelike geodesic problem has no relevance to gravitational lensing
where we are interested in lightlike geodesics between a point and a timelike
curve, not in timelike geodesics between two points.

For our purpose, the relevant variational problem is Fermat’s principle. A
Morse theory based on a version of Fermat’s principle in globally hyperbolic
spacetimes was invented by Uhlenbeck [78] who, in analogy to her treatment
of the timelike geodesic problem in the same paper, used finite dimensional
approximation techniques. Her results were used by McKenzie [45] to formu-
late conditions under which in a gravitational lensing situation the number of
images must be odd. As to an infinite dimensional version of Morse theory for
Fermat’s principle, the most natural starting point seems to be the formalism
established in Sect. 3.5. Unfortunately, the parametrization fixing condition
on the trial curves, i. e., condition (c) of Definition 6, together with the fact
that the trial curves are of type H2 rather than of type H1, leads to many
technical problems. For that reason Giannoni, Masiello and Piccione [22] [23]
used a slightly different Hilbert manifold setting as the starting point. This
approach led, indeed, to a full Morse theory for lightlike geodesics between
a point and a timelike curve in a globally hyperbolic spacetime. In the rest
of this subsection we shall review their main result and discuss some of its
implications. Since the mathematical details are highly technical we have to
refer to the original articles [22] and [23] for the proofs.

It was already mentioned that the general setting for treating variational
problems in terms of infinite dimensional Hilbert manifolds is due to Palais
and Smale [52] [53]. In this setting one considers differentiable functions
F : X −→ R on a real Hilbert manifold X . In applications to variational
problems, X is the space of trial curves (or, more generally, trial maps) which
is typically infinite dimensional, F is the functional to be extremized, and the
critical points of F (i. e., the points where the differential of F has a zero) are
the solutions of the variational problem. It is the goal to relate the number of
critical points of F to the topology of X . More precisely, one wants to relate
the number Nk of critical points where the Hessian of F has index k to the
k-th Betti number Bk of X . Formally, Bk is defined for each topological space
X in terms of the k-th singular homology space Hk(X ) with coefficients in
a field F (The results of Morse theory are true for any choice of F ). For the
definition of singular homology spaces the reader is refered, e. g., to Dold
[11], p. 32, or to Spanier [75], p. 173. Hk(X ) is a vector space over F and Bk

is, by definition, the dimension of this vector space. Geometrically, Bo is the
number of connected components of X and, for k ≥ 1, Bk can be interpreted
as the number of those “holes” in X that prevent a k-cycle with coefficients in
F from being a boundary. In particular, if M is contractible to a point, then
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Bk = 0 for all k ≥ 1. Palais and Smale were able to establish the following
result, see Corollary (3), p. 338, in Palais [52].

Assume that F : X −→ R is of class C3 at least and satisfies the following
conditions.

(1) F is a Morse function, i. e., at each critical point of F the Hessian of F
is non-degenerate.

(2) F is bounded from below.
(3) F satisfies the socalled Condition C, also known as Palais-Smale con-

dition: There is a complete Riemannian metric h on X such that the
following holds. If S is any subset of X on which F is bounded and ||dF ||
is not bounded away from zero, then there is a critical point of F adherent
to S. Here || · || denotes the norm induced by the metric h.

Then the Morse inequalities

Nk ≥ Bk , k ≥ 0 (22)

and the relation
∞∑

k=0

(−1)kNk =
∞∑

k=0

(−1)kBk (23)

hold true. The right-hand side of (23) is, by definition, the Euler characteristic
χ of X . If one introduces the notation N+ =

∑∞
i=0 N2i and N− =

∑∞
i=0 N2i+1,

then (23) takes the form

N+ −N− = χ . (24)

Please note that the Nk and Bk need not be finite.
The geometric idea behind this result is the following. It turns out that

the topology of the sublevel set Xt = {x ∈ X |F (x) ≤ t } remains unchanged
if t varies over an interval which does not contain a critical value of F (i. e.,
a value taken by F at some critical point). On intervals containing a critical
value, the topology of the sublevel set changes by “attaching a handle” for
each critical point, with the special type of the handle determined by the
index of the Hessian of F at the critical point. This result was first proven by
Morse for functions on compact (and thus finite dimensional) manifolds, see
Milnor [46]. In that case Condition C is automatically satisfied. As a matter
of fact, Condition C was introduced as a sufficient condition for proving the
same “handle-body theorem” without the compactness assumption.

If we want to apply this general result to our variational problem, we have
to check if the assumptions on F are satisfied by the arrival time functional
τ : H2

p,γ −→ R discussed in Sect. 3.5. The Morse index theorem tells us that
τ is a Morse function if and only if γ does not intersect the caustic of the
past light cone of p. By Proposition 10, this is the case for almost all p once
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γ has been chosen. Moreover, the Morse index theorem tells us that Nk is
the number of past-ponting lightlike geodesics from p to γ that pass through
k conjugate points before arriving at γ, counting each conjugate point with
multiplicity. The second condition of F being bounded from below is easily
checked to be true on globally hyperbolic spacetimes. The main problem
comes with the third condition, i. e., with Condition C. Giannoni, Masiello
and Piccione [22] [23] found it necessary to modify the whole setting a little
bit before they were able to verify Condition C. First they considered H1 trial
curves, rather than H2 trial curves, i. e., curves which are differentiable almost
everywhere and whose derivative is locally square integrable. Unfortunately,
the equation g(λ′, λ′) = 0 (almost everywhere) does not define a submanifold
of H1

(
[0, 1],M

)
, contrary to the H2 case. Therefore Giannoni, Masiello and

Piccione replaced this with the equation g(λ′, λ′) = −ε2 which, for fixed
ε > 0, defines a submanifold and considered the limit ε → 0 afterwards.
Second, they dropped the parametrization condition (c) of Definition 6. This
has the effect that every critical point of the arrival time functional now
comes together with all its (H1) reparametrizations, i. e., τ cannot be a
Morse function on this modified space of trial curves. Therefore Giannoni,
Masiello and Piccione switched to a new functional Q that is related to the
arrival time functional in a similar fashion as the energy functional E(α) =∫ 1
0 h

(
α′(s), α′(s)

)
ds to the length functional $(α) =

∫ 1
0

√
h
(
α′(s), α′(s)

)
ds

in Riemannian geometry. In this modified setting Giannoni, Masiello and
Piccione were, indeed, able to verify Condition C, thereby establishing a full
Morse theory for the variational problem at hand. Their main result can be
phrased in the following way.

Theorem 4. (Morse relations for lightlike geodesics) Let (M, g, T +) be a
globally hyperbolic spacetime, fix a point p ∈ M and a past-pointing timelike
C∞ curve γ : I −→ M from an open interval I into M such that p /∈ γ.
Assume that γ is closed in M and does not intersect the caustic of the past
light cone of p. Let H1

p,γ denote the topological subspace of H1
(
[0, 1],M

)
consisting of all λ ∈ H1

(
[0, 1],M

)
with λ(0) = p, λ(1) ∈ γ, g(λ′, λ′) = 0 and

λ′ past-pointing almost everywhere. Let Bk be the k-th Betti number of H1
p,γ

and Nk the number of past-pointing lightlike geodesics from p to γ that pass
through k conjugate points before reaching γ, counting each conjugate point
with multiplicity. Then the Morse relations (22) and (23) hold true.

This result is implied by Theorem 1.7 of Giannoni, Masiello and Piccione
[23]. Actually, they prove a slightly more general result since they consider
curves confined to a subset Λ of M with certain properties. Our Theorem 4
is the version for Λ = M in which case the assumptions placed by Giannoni,
Masiello and Piccione upon the functional are satisfied, for each pair (p, γ),
if and only if the spacetime is globally hyperbolic.

The Morse relations have several interesting implications. Information on
the Nk, i. e., on the number of images in gravitational lensing situations,
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place restrictions upon the Betti numbers and the other way round. If we
want to make full use of such results we need, of course, some methods of
determining the topology of the curve space H1

p,γ which is a difficult task in
general. Before commenting on this problem we list some consequences of the
Morse relations. Under the assumptions of Theorem 4, the following is true.
(a) The Morse inequality for k = 0, i. e. No ≥ Bo, implies that there are
at least Bo past-pointing lightlike geodesics from p to γ which are free of
conjugate points, where Bo is the number of connected components of H1

p,γ .
This strengthens Proposition 16.
(b) If H1

p,γ is non-empty (i. e., γ ∩ I−(p) �= ∅) and not contractible, we
have Bo ≥ 1 and Bk ≥ 1 for some k ≥ 1. Then there is a multiple imaging
situation, No +Nk ≥ 2, and at least one past-pointing lightlike geodesic from
p to γ must contain a conjugate point.
(c) If the number of past-ponting lightlike geodesics from p to γ is finite, then
all the Betti numbers Bk must be finite.
(d) If we write the Morse relation (23) in the form of (24), we find N++N− =
2N− +χ . Thus, in a gravitational lensing situation with finitely many images
the total number of images is odd if and only if the Euler characteristic χ is
odd.

It is an interesting problem to determine all globally hyperbolic spacetimes
in which gravitational lensing always leads to an odd number of images.
(Please recall that the assumption of global hyperbolicity implicitly restricts
to transparent deflectors.) With the help of Morse theory we have reduced
this to the problem of determining the Euler characteristic of the curve space
H1

p,γ , for each pair (p,γ) that satisfies the assumptions of Theorem 4. In some
special cases, this can be achieved in the following way, please cf. McKenzie
[45] for a similar investigation.

Let us assume that the assumptions of Theorem 4 are satisfied and choose
a timelike C∞ vector field V on M such that V is tangent to γ. This is
possible, see Proposition 5.1 in Giannoni, Masiello and Piccione [22]. Then
the projection (21) defines a map λ �−→ λ̂ = πV ◦ λ from H1

p,γ to the space
Ĥ1

p,γ =
{
λ̂ ∈ H1

(
[0, 1],SV

) ∣∣ λ̂(0) = πV (p) , λ̂(1) = πV (γ)
}
. This map is

obviously continuous. Moreover, it is injective since a past-pointing lightlike
curve is uniquely determined by its initial point and by its spatial projection.
In general, however, it need not be surjective because for some curves in
the target space the lightlike lift may terminate (at the “boundary” of M)
before γ has been reached. This certainly happens whenever there is a particle
horizon in the sense that for some point q ∈ I−(p) there is no past-pointing
causal curve from q to γ. As a simple example where particle horizons occur
one may consider Minkowski space restricted to the region t > 0 . Let us
say that the lightlike lifting property is satisfied for the pair (p,γ) if the
map λ �−→ λ̂ = πV ◦ λ gives a homeomorphism from H1

p,γ onto Ĥ1
p,γ . As

C∞ curves are dense in the set of H1 curves and the lifting procedure is
obviously H1-continuous, the lightlike lifting property is satisfied if every C∞
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curve in Ĥ1
p,γ is the projection of a curve λ in H1

p,γ . An analytical condition
that guarantees the lightlike lifting property is the socalled metric growth
condition of Uhlenbeck [78] which was employed by McKenzie [45]. We can
now prove the following result.

Theorem 5. (Odd number theorem) Assume that all the assumptions of
Theorem 4 are satisfied and let V be a timelike C∞ vector field on M such
that V is tangent to γ. Moreover, assume that the lightlike lifting property is
satisfied for (p,γ) and that the space SV is contractible. Then the number of
past-pointing lightlike geodesics from p to γ is (infinite or ) odd.

Proof. If SV is contractible, the curve space Ĥ1
p,γ is contractible. To prove this

one fixes a particular C∞ curve λ̂o ∈ Ĥ1
p,γ and considers a differentiable map

φ : [0, 1] × [0, 1] × SV −→ SV such that φ(s, 0, x) = x and φ(s, 1, x) = λ̂o(s)
for all s ∈ [0, 1] and x ∈ SV . The existence of such a map is guaranteed
since SV is contractible. (It is true that contractibility is defined in terms of
homotopies of continuous maps. However, according to a well-known theorem
every continuous map between two manifolds is homotopic to a C∞ map, see,
e. g., Bott and Tu [7], Proposition 17.8, p. 213.) Now the desired contraction
Φ : [0, 1] × Ĥ1

p,γ −→ Ĥ1
p,γ is defined by Φ(t, λ̂)(s) = φ(s, t, λ̂(s)). Since the

lightlike lifting property is satisfied, this implies that H1
p,γ is contractible,

i. e., the Morse relations hold with Bo = 1 and Bk = 0 for k > 0 which
implies χ = 1 . If we write the Morse relation (23) in the form of (24), we
find N+ + N− = 2N− + 1 , i. e., N+ + N− is (infinite or) odd. �

This theorem can be phrased as saying that a transparent deflector produces
an odd number of images provided that there are no particle horizons and the
spatial topology is trivial. It is, of course, true that particle horizons do occur
in many cosmological models which are of physical interest. So, in a sense, the
lightlike lifting property may be considered as a reasonable assumption only
in gravitational lensing situations where cosmological aspects can be ignored.

An obvious example where the lightlike lifting property is satisfied is the
case that V is a complete and hypersurface-orthogonal conformal Killing
vector field. In that case Fermat’s principle reduces to the geodesic problem
for a Riemannian metric h on SV , as outlined at the end of Sect. 3.4, and
global hyperbolicity is easily checked to be equivalent to completeness of the
Riemannian manifold (SV , h). Hence, the Morse theory for Fermat’s principle
reduces to the standard Morse theory for Riemannian geodesics.

It is an open problem to determine the Euler characteristic of the curve
space H1

p,γ in cases where particle horizons do occur, i. e., where the lightlike
lifting property is violated. Apparently no results in this direction exist so-
far. The socalled “chronological homotopy theory” employed by Woodhouse
[87] might be of help in this connection. The latter is closely related to the
Lorentzian fundamental groups of Smith [74] and to the notion of “future
one-connectedness” of Flaherty [15] [16] which is also discussed in Beem,
Ehrlich and Easley [4].
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The formalism presented in this subsection has a (much simpler) analogue
in the quasi-Newtonian approximation of gravitational lensing. A Morse the-
ory for the latter situation was developed by Petters [61] [63]. In that case
the space of trial curves is genuinely finite dimensional, so one can apply
the techniques of Morse without having to consider a limit N → ∞. In par-
ticular, Petters [61] used this formalism to prove an odd number theorem.
Already earlier, it was shown by Burke [9] that in the quasi-Newtonian ap-
proximation every transparent deflector produces an odd number of images.
Burke used a fairly simple argument from differential topology, rather than
Morse theory, cf. Schneider, Ehlers and Falco [70], p. 172, and Lombardi [42].
A similar argument will be used in the next section to prove an odd num-
ber theorem, without invoking Morse theory, for asymptotically simple and
empty spacetimes, see Theorem 6 below.

It should be mentioned that, actually, there are several gravitational lens
candidates where an even number of images is observed. Usually astronomers
are not troubled by this fact because they found good reasons to assume that
in those cases one of the images is too faint to be seen. Also, it might be
possible that one image is hidden behind the deflector, or that two images
are so close together that they are mistaken for being just one image.

5 Gravitational Lensing in Asymptotically Simple
and Empty Spacetimes

In elementary optics one often considers “light sources at infinity” which are
characterized by the fact that all light rays emitted from such a source are
parallel to each other. In this section we want to introduce the notion of “light
sources at infinity” for general-relativistic spacetimes. To that end we have
to restrict to a special class of spacetimes called “asymptotically simple and
empty”. Roughly speaking, an asymptotically simple spacetime is a spacetime
for which the notion of “(future- or past-pointing) light rays going out to
infinity” makes sense. The following definition, which is essentially due to
Penrose [54], puts this vague idea into precise form, cf., e. g. Hawking and
Ellis [29], p. 222.

Definition 8. A spacetime (M, g, T +) is called asymptotically simple if there
is a strongly causal spacetime (M̃, g̃, T̃ +) with the following properties.
(a) M is an open submanifold of M̃ with a non-empty boundary ∂M .
(b) There is a C∞ function Ω : M̃ −→ R such that M = {p ∈ M̃|Ω(p) > 0},
∂M = {p ∈ M̃|Ω(p) = 0}, and the equation g̃ = Ω2 g holds on M .
(c) Every inextendible lightlike geodesic in M has two endpoints on ∂M .
(M, g, T +) is called asymptotically simple and empty if, in addition,
(d) there is a neighborhood U of ∂M in M̃ such that the Ricci tensor of g
vanishes on U ∩M.
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Asymptotically simple and empty spacetimes are good models for isolated
gravitating bodies. Condition (d) of Definition 8 is a way of saying that, suf-
ficiently far away from the gravitating body under consideration, Einstein’s
vacuum field equation is satisfied. This is a reasonable model for a deflec-
tor producing gravitational lensing as long as cosmological aspects can be
ignored.

Conditions (b) and (c) of Definition 8 imply that in an asymptotically
simple spacetime all lightlike geodesics are complete. Indeed, since on M
the equation g̃ = Ω2g is supposed to hold, every lightlike g-geodesic be-
comes a lightlike g̃-geodesic by changing the affine parameter according to
ds/ds̃ = Ω−2. As Ω is zero on ∂M, this implies that s → ±∞ if the geodesic
approaches ∂M . Hence, it is justified to interpret the elements of ∂M as
points at infinity or, more precisely, as those points at infinity which can be
reached along light rays. Thus, our plan to consider “light sources at infinity”
naturally leads to considering “worldlines” contained in ∂M.

In view of gravitational lensing, the observation that in an asymptotically
simple and empty spacetime all lightlike geodesics are complete has the fol-
lowing interesting consequence. By a well-known theorem (see Hawking and
Ellis [29], Proposition 4.4.5) a complete lightlike geodesic must contain a pair
of conjugate points if the weak energy condition and the socalled “generic
condition” are satisfied along this geodesic. By Proposition 7, the occurence
of conjugate points gives rise to multiple imaging. This result may be inter-
preted as saying that in almost all physically reasonable spacetimes which
are asymptotically simple and empty multiple imaging takes place.

Before turning our attention to “light sources at infinity” we have to
recall some basic facts about asymptotically simple and empty spacetimes.
First we use part (b) of Definition 8 to define a vector field Z on M̃ by the
equation dΩ = g̃(Z, · ). It is well-known that condition (d) of Definition 8
implies that Z is non-vanishing and g̃-lightlike at each point of ∂M. For a
proof we refer to Hawking and Ellis [29], p. 222. (Please note that Hawking
and Ellis include the assumption of dΩ having no zeros on ∂M into the
definition of asymptotically simple spacetimes. However, it is a well-known
result of Penrose [54] that, with the additional assumption (d) of asymptotical
emptiness, this property must be automatically satisfied.) As a consequence,
∂M is a g̃-lightlike hypersurface of M̃, ruled by the integral curves of Z which
are g̃-lightlike geodesics (up to parametrization). Those lightlike geodesics are
called the generators of ∂M.

In combination with assumption (c) of Definition 8, the property of ∂M
being a g̃-lightlike hypersurface implies that ∂M has two connected com-
ponents: J + (pronounced “scri plus”) where future-pointing g-lightlike geo-
desics terminate and J− (pronounced “scri minus”) where past-pointing g-
lightlike geodesics terminate. – We now state an important proposition, es-
sentially due to Geroch [21], which determines the global structure of asymp-
totically simple and empty spacetimes.
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Proposition 18. Let (M, g, T +) be an asymptotically simple and empty
spacetime. Then (M, g, T +) is globally hyperbolic and every Cauchy surface
is homeomorphic to R

3. Either component J± of ∂M can be diffeomorphi-
cally mapped onto S2×R in such a way that each generator of J± is mapped
onto an R-line. Here S2 denotes the 2-dimensional sphere.

If the reader wants to verify the proof of this proposition he or she should
consult Newman and Clarke [49] who clarified a subtlety overlooked in the
original work of Geroch [21] and in Hawking and Ellis [29], Proposition 6.4.9..

After these preparations we are now ready to discuss gravitational lens-
ing situations with light sources at infinity. To that end we consider, in an
asymptotically simple and empty spacetime, a sequence of timelike C∞ curves
γn : I −→ M that approach, for n → ∞, a curve γ : I −→ J−. We want
to assume that γ is an immersed curve of class C 1 at least, and that the
limit is in the C 1 sense, i. e., that not only lim

n→∞ γn(s) = γ(s) in M̃ but

also lim
n→∞ γ′

n(s) = γ′(s) in TM̃. Since γ′
n(s) is g-timelike and thus g̃-timelike,

γ′(s) is either g̃-timelike or g̃-lightlike. The first case is impossible, since J−

is a lightlike hypersurface with respect to g̃, and the second case is possible
only if γ′(s) is tangent to a generator of J−. We are thus led to the following
conclusion. In an asymptotically simple and empty spacetime, the worldline
of a light source at infinity is to be identified with (a section of) a generator
of J−.

Please note that this does not mean that light sources at infinity move at
the speed of light. The (physical) metric g is not defined on ∂M, i. e., it does
not make sense to speak of the causal character of a curve γ : I −→ J− with
respect to g. The (unphysical) metric g̃ is but a formal device to introduce a
geometric structure on the set of points at infinity. The causal character of
curves in ∂M with respect to g̃ has no direct physical interpretation.

Henceforth we restrict to light sources at infinity with inextendible world-
lines, i. e., to (maximal) generators of J−. From Proposition 18 we know that
the set of generators of J− is a manifold diffeomorphic to the 2-sphere S2.
Hence, the set of all light sources at infinity is in one-to-one correspondence
with the points of S2. On the other hand, we can consider for any p ∈M the
set of all one-dimensional g-lightlike subspaces of TpM. This, again, gives a
manifold diffeomorphic to S2 which may be called the sky at p. Clearly, each
point of this manifold determines a g-lightlike past-pointing geodesic through
p uniquely up to parametrization (i. e., it determines a light ray arriving at p),
and vice versa. Hence, the points of this manifold can, indeed, be identified
with the points at the celestial sphere of an observer at p. This construction
defines for each p ∈M a C∞ map

fp : S2 −→ S2 (25)

by assigning to each point x of the sky at p a light source fp(x) at infinity by
extending the lightlike geodesic tangent to x until it reaches J− � S2 × R



Gravitational Lensing 417

and projecting onto the first factor afterwards. Henceforth we refer to this
map fp as to the lens map at p for light sources at infinity. The lens map can
be written in an obvious way with the help of the exponential map. Based
on the same idea, one may try to establish a similar lens map in arbitrary
spacetimes. The problem is that in the general situation there is no natural
“source sphere”, i. e., no analogue of the sphere at infinity. Nonetheless, a
kind of general lens map can be established, as was recently demonstrated by
Frittelli and Newman [19]. Their formalism, which is based on the Hamilton-
Jacobi equation for families of light rays, will not be used in this article.
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Fig. 6. In this picture the smaller sphere is meant to represent the sky at p and
the bigger sphere is meant to represent light sources at infinity. The lens map (25)
assigns to each point x of the sky at p a light source fp(x) at infinity. If fp is not
one-to-one, then there is multiple imaging for light sources at infinity.

The lens map (25) obviously gives all informations on how light sources
at infinity are seen by an observer at p. For each light source at infinity,
represented by a point y ∈ S2, the set f−1

p (y) gives all points at the sky
of p where this light source is seen, see Fig. 6. If f−1

p (y) consists of more
than one point, then there is multiple imaging. Please recall that y ∈ S2 is
called a regular value of fp if for all y ∈ S2 with fp(x) = y the differential
Txfp : TxS

2 −→ TyS
2 has maximal rank (i. e., is surjective). It is easy to

check that y is a regular value of the lens map if and only if the generator
represented by y does not insersect the caustic of the past light cone of p.
Here and in the rest of this subsection the term “light cone” always refers to
the light cone in M̃ with respect to the metric g̃ since we need the extension
of the “physical” light cone to J−. Owing to the well-known Theorem of Sard
(see, e. g., Guillemin and Pollack [26], p. 39, or Hirsch [31], p. 69) almost all
points y ∈ S2 are regular values of the lens map. This is in agreement with
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Proposition 10 according to which the situation that a light source passes
through a caustic point is to be viewed as “exceptional”. By compactness
of S2, f−1

p (y) is finite for any regular value y. Hence, the observer at p sees
finitely many images of each light source at infinity that does not pass through
the caustic of the past light cone of p.

We shall now establish the remarkable result that, for each light source
at infinity which does not pass through the caustic of the observer’s past
light cone, the number of images is odd. Based on this observation we shall
then prove that the same result is true for a light source moving inside M
provided that its worldline is inextendible and does not approach J−. This
odd number theorem for light sources in asymptotically simple and empty
spacetimes will emerge as an application of elementary differential topology;
in particular, it will not be necessary to invoke the considerable technical
apparatus of Morse theory that was discussed in Sect. 4.2 above.

The proof of our odd number theorem is based on a simple idea. How-
ever, the details of the proof look a little bit involved since it is necessary
to introduce some cumbersome notation. For that reason we first give the
general idea upon which the proof is based. This general idea of an odd-
number argument is popular with astronomers who usually present it on the
understanding that space and time can be described in a Newtonian fashion.
Then the argument goes like this (cf. Schneider, Ehlers and Falco [70], p.
176). Consider all light rays that reach at a particular instant an observer at
the point p . Parametrize these light rays with time, in a past-pointing way
such that they have t = 0 on their arrival at p. Then for all t > 0 we can
consider the wavefront Wt, defined as the set of all points in space that are
crossed by at least one of the considered light rays at the time t. For small
t, Wt is a sphere around p. For larger t, Wt will develop self-intersections
because the light rays are influenced by gravitating masses in the universe.
Whenever the wavefront crosses a light source, given by a point moving in
space in dependence of time, this gives rise to an image of the light source
seen at p. As the wavefronts develop as continuous deformations of a sphere,
the following definition makes sense. We say that the light source is outside of
the wavefront Wt if the position of the light source at t can be connected to p
by a curve that intersects Wt an odd number of times and inside otherwise.
Here we have to restrict to curves that intersect the wavefront transversely
and only at points where the wavefront is an immersed submanifold, i. e., not
at caustic points. Now we assume that the light source itself never touches a
wavefront with a tangent velocity vector and that it stays away from caustic
points. Then, whenever the light source meets a wavefront, it changes from
outside to inside or vice versa. For small t the light source is outside. For
large t it is inside, provided that all light rays go out to infinity and the light
source does not go out to infinity. This implies that, in total, the wavefront
crosses the light source an odd number of times, i. e., that there is an odd
number of images.
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Instead of the somewhat vague notion of being inside or outside one may
use he socalled “mapping degree” from differential topology. Using this ter-
minology the above argument was written down, apparently for the first time,
in the introduction of McKenzie [45]. Gottlieb [25] tried to translate this gen-
eral idea into a Lorentzian manifold setting and came to the conclusion that
the argument does not work without quite special and unrealistic assump-
tions. However, this conclusion is largely based on the fact that Gottlieb
implicitly restricts to multiple imaging situations without time delay. What
we want to show in the following is that, with the help of the mapping de-
gree, the above-mentioned odd number argument can be made into a precise
theorem in asymptotically simple and empty spacetimes. The crucial point
is, of course, that in this case it is guaranteed that all light rays go out to
infinity. As an aside, we mention that a slightly different mapping degree
argument was used by Lombardi [42] to prove an odd number theorem in the
quasi-Newtonian approximation formalism. This is closely related to Burke’s
[9] original proof of an odd number theorem, again in the quasi-Newtonian
approximation, using the index of vector fields. The latter is also discussed
in Schneider Ehlers and Falco [70].

The essential tool for our proof is the mapping degree of a C 1 map
F : M1 −→ M2 between oriented manifolds of the same dimension. In the
following we briefly summarize the basic facts about this notion. For more
background material the reader is refered to Westenholz [83], Guillemin and
Pollack [26] and Dold [11] who, in this order, treat the subject with an in-
creasing amount of abstract mathematics. First we recall that, by the Sard
theorem already mentioned above, almost all points y ∈M2 are regular val-
ues of F . If, for such a regular value y, the pre-image F−1(y) is contained in
a compact set and thus finite, the local degree of F at y can be defined by
the equation

degy(F ) =
∑

x ∈ F −1(y)

sgn(x) . (26)

where sgn(x) is, by definition, equal to +1 if the tangent map TxF preserves
orientation and equal to −1 if TxF reverses orientation. One can then estab-
lish the following facts.

(a) If M1 and M2 are both compact without boundary, degy(F ) is the
same for all regular values y. In this case one calls deg(F ) = degy(F ) simply
the degree of F . The degree is a homotopic invariant in the sense that a
second C 1 map F̃ : M1 −→ M2 has the same degree as F if and only if F
can be continuously deformed into F̃ .

(b) If M1 and M2 are compact with smooth boundaries, and if F restricts
to a map ∂F : ∂M1 −→ ∂M2, then

degy(F ) = deg(∂F ) (27)

for all regular values y ∈M2 \ ∂M2.
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We are now ready to state and prove the desired odd number theorem.

Theorem 6. For any point p in an asymptotically simple and empty space-
time (M, g, T +), the following holds true.
(a) The lens map (25) has degree one, deg(fp) = 1. As a consequence, each
generator of J− that does not pass through the caustic of the past light cone
of p can be reached from p along an odd number of lightlike geodesics. (We
have already seen above that this number is finite.)
(b) Let I be an open interval and γ : I −→M a timelike embedded C∞ curve
such that γ is closed in M and has no endpoint on J−. (This is a way of
saying that γ is inextendible in M and, in the past direction, does not go out
to infinity approaching the velocity of light.) If γ does not pass through the
caustic of the past light cone of p, then the number of past-pointing lightlike
geodesics from p to γ is finite and odd.

Proof. Fix a curve γ that satisfies the assumptions of (b). We want to con-
struct a timelike C∞ vector field V on M that is tangent to γ and smoothly
extends to the vector field Z on J− given by g̃(Z, ·) = dΩ. First we choose a
future-pointing timelike C∞ vector field V1 on some neighborhood U 1 of γ in
M such that V1 is tangent to γ. This is possible since γ is an embedding and
γ is closed in M; the proof can be patterned after the proof of Proposition
5.1 in Giannoni, Masiello and Piccione [22]. Then we choose a future-pointing
timelike C∞ vector field V2 on an open subset U 2 of M whose closure in M̃
covers J− such that V2 smoothly extends to Z on J−. The existence of such
a vector field V2 follows from the fact that J− is a closed embedded g̃-light-
like submanifold of M̃. Since γ does not approach J−, the domains of V1
and V2 can be chosen disjoint. Finally, we choose a future-pointing timelike
C∞ vector field V3 on an open subset U 3 of M such that U 1, U 2 and U 3
cover M and the closure of U 3 in M̃ has void intersection with γ and with
J−. Then we get the desired vector field V by combining V1, V2 and V3
with a partition of unity. For this vector field V , we consider the projection
(21) onto the 3-manifold of integral curves of V . By Proposition 18, SV is
homeomorphic to R

3. Since, by the theorem of Moise [47] already mentioned
above, any 3-dimensional topological manifold admits a unique differentiable
strcuture, SV must even be diffeomorphic to R

3 or, what is the same, to the
open unit ball B =

{
x ∈ R

3
∣∣ |x| < 1

}
. Since V extends to the vector field Z

on J− that is tangent to the generators, πV extends to a C∞ map

πV : M∪J− −→ B (28)

between manifolds with boundaries. – Now the vector field V defines a time-
like vector Vp at the point p. We choose three spacelike tangent vectors
E1, E2, E3 at p with g̃(Eμ, Vp) = 0 and g̃(Eμ, Eν) = −g̃(Vp, Vp) δμν . Then
each x ∈ R

3 defines a past-pointing lightlike g̃-geodesic λx by initial condi-
tions λx(0) = p and λ′

x(0) = x1E1 + x2E2 + x3E3 − |x|Vp . Since we use the
g̃-affine parametrization, rather than the g-affine parametrization, λx arrives
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at J− at a finite parameter value v(x) ∈ R. Having established the projec-
tion (28), the map x �−→ λx and the map x �−→ v(x), we are now ready to
prove part (a) of the proposition. For each x ∈ S2, the curve πV ◦ λx in B
starts at the origin and reaches the boundary at some parameter value v(x).
Hence, for each r ∈ ]0, 1], there is a unique parameter value u(r, x) ≤ v(x)
such that

∣∣πV

(
λx(s)

)∣∣ is smaller than r for 0 < s < u(r, x) and equal to
r for s = u(r, x). Then the assignment x �−→ Φr(x) = 1

rπV

(
λx

(
u(r, x)

))
gives a C∞ map Φr : S2 −→ S2. For r = 1 we get the lens map (25),
Φ1 = fp. For r sufficiently small, Φr is an orientation preserving diffeomor-
phism, hence deg(Φr) = 1. This follows from the fact that the light cone
looks like the Minkowski light cone if we restrict to sufficiently short light
rays. Since the degree is a homotopic invariant, letting r vary from some
small value up to the value 1 shows that the lens map has degree one. Now
each generator of J− is the pre-image of a point y ∈ S2 = ∂B under the
map πV . This point y is a regular value of the lens map if and only if the
generator does not meet the caustic of the past light cone of p. Under this
condition f−1

p (y) is finite, by compactness of S2. Let us denote by n± the
number of points x ∈ f−1

p (y) such that sgn(x) = ±1. Then the definition
of the degree implies n+ − n− = deg(fp). Since deg(fp) = 1, this gives
n+ + n− = 2n− + 1, i. e., the number of points in f−1

p (y) is odd. – Now we
prove part (b). To that end we consider the map F : B −→ B defined by
F (x) = πV

(
λx(v(x) |x|)

)
. Clearly, the restriction of this map to the bound-

ary gives the lens map ∂F = fp : ∂B = S2 −→ ∂B = S2. If our curve γ
does not meet the caustic of the past light cone of p, the point y ∈ B with
π −1

V (y) = γ is a regular value of F . Hence, by (27), degy(F ) = deg(fp) = 1.
By compactness of B, the set F−1(y) is finite. As in the proof of part (a), we
get n++n− = 2n−+1, where n± denotes the number of elements x ∈ F−1(y)
with sgn(x) = ±1. Thus, the number of elements in F−1(y) is odd. �

The fact that the lens map has degree one implies, in particular, that the lens
map is surjective which was not obvious from the start. The reader should
also consult Kozameh, Lamberti and Reula [38] who state in Lemma 1 a
result which is essentially equivalent to the fact that, in our terminology, the
lens map has degree one. This paper [38] belongs to a long series of articles
by Ted Newman, Carlos Kozameh and various coauthors on studying general
relativity in terms of the Hamilton-Jacobi equation for families of lightlike
geodesics. For reviews on this topic we refer to Chap. 7 of Joshi [33] and to
Kozameh [37]. In particular, these authors have found interesting results on
the geometry of “light cone cuts at infinity”, i. e., of intersections of light
cones with J + or J− in an asymptotically simple and empty spacetime,
which are of relevance in view of gravitational lensing.

As stressed already at the beginning of this subsection, an asymptotically
simple and empty spacetime is a good model for an isolated gravitating body,
i. e., if cosmological aspects are ignored. Rudiments of cosmology can be
introduced by modifying condition (d) of Definition 8. E. g., one could require
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Ric = Λg near ∂M with a positive or negative cosmological constant Λ,
rather than the vacuum field equation Ric = 0 . The resulting spacetimes are
called asymptotically deSitter for Λ > 0 and asymptotically anti-deSitter for
Λ < 0. It was verified already by Penrose [54] that then ∂M is no longer
g̃-lightlike but rather g̃-spacelike for Λ > 0 and g̃-timelike for Λ < 0. In
the latter case we can consider immersed worldlines in ∂M which are g̃-
timelike. For such “light sources at infinity” in an asymptotically anti-deSitter
spacetime we have Fermat’s principle in the version of Theorem 1, viewed in
the spacetime (M̃, g̃, T̃+), at our disposal. This observation was used by
Woolgar [88] to prove a positive energy theorem for asymptotically anti-
deSitter spacetimes.

The class of asymptotically simple spacetimes seems particularly appro-
priate for discussing gravitational lensing in a Lorentzian geometry setting.
As only a few results in this direction have been worked out so far, all dedi-
cated experts are invited to join the work in this interesting field.
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10. Chwolson, O. (1924) Über eine mögliche Form fiktiver Doppelsterne. Astro-
nomische Nachrichten 221, 329

11. Dold, A. (1980) Lectures on algebraic topology. Springer, Berlin
12. Eddington, A. S. (1920) Space, time, and gravitation. Cambridge Univ. Press,

Cambridge
13. Everson, J., Talbot, C. (1976) Morse theory on timelike and causal curves.

Gen. Rel. Grav. 7, 609–622. Erratum (1978) 9, 1047
14. Faraoni, V. (1992) Nonstationary gravitational lenses and the Fermat princi-

ple. Astrophys. J. 398, 425–428



Gravitational Lensing 423

15. Flaherty, F. (1975) Lorentzian manifolds of non-positive curvature. I. Proc.
Symp. Pure Math. 27, No. 2, 395–399

16. Flaherty, F. (1975) Lorentzian manifolds of non-positive curvature. II. Proc.
Amer. Math. Soc. 48, 199–202

17. Frankel, T. (1979) Gravitational curvature. Freeman, San Francisco
18. Friedrich, H., Stewart, J. (1983) Characteristic initial data and wavefront sin-

gularities in general relativity. Proc. Roy. Soc. London A 385, 345–371
19. Frittelli, S., Newman, Ezra T. (1998) An exact universal gravitational lensing

equation. preprint gr-qc/9810017
20. Geroch, R. (1970) Domain of dependence. J. Math. Phys. 11, 417–449
21. Geroch, R. (1971) Space-time structure from a global viewpoint. In

Sachs, R. K. (Ed.) General relativity and cosmology, Enrico Fermi School,
Course XLVII. Academic Press, New York, 71–103

22. Giannoni, F., Masiello, A., Piccione, P. (1997) A variational theory for light
rays in stably causal Lorentzian manifolds: Regularity and multiplicity results.
Commun. Math. Phys. 187, 375–415

23. Giannoni, F., Masiello, A., Piccione, P. (1998) A Morse theory for light rays
on stably causal Lorentzian manifolds. Ann. Inst. H. Poincaré, Physique The-
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21. Zum Übergang von der Wellenoptik zur geometrischen Optik in der all-
gemeinen Relativitätstheorie, Zeitschrift f. Naturforschung 22a, 1328–1332
(1967).
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